Fluid Mechanics and Its Applications Roelof Vos Saeed Farokhi Introduction to Transonic Aerodynamics Fluid Mechanics and Its Applications Volume 110 Series editor André Thess, German Aerospace Center, Institute of Engineering Thermodynamics, Stuttgart, Germany Founding Editor René Moreau, Ecole Nationale Supérieure d’Hydraulique de Grenoble, Saint Martin d’Hères Cedex, France Aims and Scope of the Series Thepurposeofthisseriesistofocusonsubjectsinwhichfluidmechanicsplaysa fundamental role. Aswellasthemoretraditionalapplicationsofaeronautics,hydraulics,heatand masstransferetc.,bookswillbepublisheddealingwithtopicswhicharecurrently in a state of rapid development, such as turbulence, suspensions and multiphase fluids, super and hypersonic flows and numerical modeling techniques. It is a widely held view that it is the interdisciplinary subjects that will receive intense scientific attention, bringing them to the forefront of technological advancement. Fluidshave the ability to transport matter and itsproperties as well astotransmitforce,thereforefluidmechanicsisasubjectthatisparticularlyopen to cross fertilization with other sciences and disciplines of engineering. The subject of fluid mechanics will be highly relevant in domains such as chemical, metallurgical, biological and ecological engineering. This series is particularly open to such new multidisciplinary domains. The median level of presentation is the first year graduate student. Some texts are monographs defining the current state of a field; others are accessible to final year undergraduates; but essentially the emphasis is on readability and clarity. More information about this series at http://www.springer.com/series/5980 Roelof Vos Saeed Farokhi (cid:129) Introduction to Transonic Aerodynamics 123 RoelofVos Saeed Farokhi Faculty ofAerospace Engineering Department of Aerospace Engineering Delft Universityof Technology The Universityof Kansas Delft Lawrence, KS The Netherlands USA ISSN 0926-5112 ISSN 2215-0056 (electronic) FluidMechanics andIts Applications ISBN 978-94-017-9746-7 ISBN 978-94-017-9747-4 (eBook) DOI 10.1007/978-94-017-9747-4 LibraryofCongressControlNumber:2015930202 SpringerDordrechtHeidelbergNewYorkLondon ©SpringerScience+BusinessMediaDordrecht2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade. Everyefforthasbeenmadetocontactthecopyrightholdersofthefiguresandtableswhichhavebeen reproducedfromothersources.Anyonewhohasnotbeenproperlycreditedisrequestedtocontactthe publishers,sothatdueacknowledgmentmaybemadeinsubsequenteditions. Printedonacid-freepaper Springer Science+Business Media B.V. Dordrecht is part of Springer Science+Business Media (www.springer.com) This book is dedicated to our wives, Carola and Mariam. Preface Within aerodynamics, the transonic Mach range is a much-studied topic among industrial and academic institutions. Many of today’s airliners cruise at Mach numbers where both subsonic and supersonic flow exist. Terms such as drag divergence, buffet, and transonic dip are all associated with transonic flow condi- tions.Transonicaerodynamicshas,toalargedegree,dominatedtheexteriordesign ofhigh-subsonicaircraftforthepast60years.However,textbooksoncompressible aerodynamicsoftenfocusonthesupersonicMachrangeandlessonthephenomena in the transonic Mach regime. Therefore, a comprehensive course on transonic aerodynamics is seldom part of an aerospace engineering curriculum. This discrepancy between the importance of transonic aerodynamics in practice and the lack of a comprehensive course on the subject is often explained by the complexity of the subject matter. Indeed, the governing equations that include all the relevant aerodynamic phenomena cannot be easily reduced to something equivalent to a thin airfoil theory or a lifting-line theory. Also, many correction factors such as the well-known Prandt-Glauert compressibility correction do not holdinthetransonicregime.Inordertopredicttheperformanceofawingorwing section, one therefore often relies on computer programs that solve a numerical implementationofthegoverningequationsofmotion.Butteachingstudentshowto operateapieceofsoftwareisnotthesameasteachingstudentsthephysicsofhow and why certain phenomena occur when a body is subjected to transonic flow conditions. Therefore, this textbook was written to teach students about the nature of transonic flow and how it can be captured in mathematical equations. Thistextbookservesasanintroductiontothesubjectoftransonicaerodynamics. In eight chapters we present a quantitative and qualitative assessment of subsonic, supersonic,andtransonicflowaboutbodiesintwoandthreedimensions.Wehave included relevant analytical analysis methods that allow students to practice with thesubjectmatter.Thebookcontainsnumerousexamplesandeverychaptercloses with a list of problems. Some subjects are treated more from a numerical per- spective(e.g.,shockandexpansiontheory),whileothersarediscussedmorefroma qualitative point of view (e.g., shock-boundary-layer interaction). Where possible, numericalexamplesandmethodshavebeenincludedtoenhancetheunderstanding vii viii Preface of each subject. The book contains 60 examples and more than 200 practice problems. Thistextbookisintendedprimarilyforseniorundergraduatestudentsorgraduate students with prior knowledge in aerodynamics. Although we repeat the funda- mental equations and flow characteristics in the beginning of the book, we do assumethatthestudenthashadacourse onsubsonicaerodynamicsandisfamiliar with its fundamentals. Even though knowledge of transonic aerodynamics is important for many internal flow applications (e.g., turbo machinery, engine intakes, exhausts, etc.) the present textbook primarily focuses on external aerody- namics with limited applications to internal flows. Examples are targeted mainly toward wings and bodies exposed to a transonic flow field. Many of the examples reference real aircraft or wing components. Therefore, a strong connection is present between the content of this textbook and the subject of transonic aircraft design. To understand why a modern high-subsonic aircraft is designed the way it is, requires one to understand the subject matter of this textbook. Acknowledgments Writing this book has been a privilege. Naturally, we would not have been able to dosowithoutthesupportofourrespectiveuniversities.Wethereforewouldliketo thanktheUniversityofKansasandDelftUniversityofTechnologyforprovidingus with the time and resources to write this book. We would also like to thank the publisher,who,basedona135-pagesummary,trustedthatwewouldextendittoits current form. We would also like to acknowledge Dr. Luca Guadani and Dr. Ali Elham who proofread various chapters and performed some of the numerical cal- culations to support the examples in this book. A special thank you to emeritus professor Egbert Torenbeek for providing us with meticulous feedback on the content of various chapters. Finally, we would like to thank the following persons on both sides of the Atlantic, who over the course of multiple years, aided in the preparation of this document: Mr. Thomas Statsny, Ms. Lisanne van Veen, Mr. Maarten Broekhuizen, Mr. Kevin Haagen, Ms. Maaike Weerdesteyn, and Mr. Amool Raina. Delft, The Netherlands, 2014 Roelof Vos Lawrence, KS, USA Saeed Farokhi Contents 1 Introduction and Historic Perspective . . . . . . . . . . . . . . . . . . . . . 1 1.1 From Subsonic to Supersonic Flight . . . . . . . . . . . . . . . . . . . 1 1.2 Definition of the Transonic Flow Domain . . . . . . . . . . . . . . . 4 1.3 Transonic Wind Tunnel Experiments. . . . . . . . . . . . . . . . . . . 5 1.4 Transonic Aerodynamics of Wings and Bodies. . . . . . . . . . . . 8 1.5 Transonic Flow Calculations . . . . . . . . . . . . . . . . . . . . . . . . 14 1.6 Outline of Present Textbook. . . . . . . . . . . . . . . . . . . . . . . . . 16 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2 Review of Fundamental Equations. . . . . . . . . . . . . . . . . . . . . . . . 21 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 Review of Partial Differential Equations . . . . . . . . . . . . . . . . 22 2.2.1 One-Dimensional Wave Equation and Solution by D’Alembert. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.2 One-Dimensional Heat Equation and Solution by Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.3 Conservation Form of PDEs. . . . . . . . . . . . . . . . . . . 33 2.2.4 Classification of Partial Differential Equations . . . . . . 35 2.3 Review of Vector Algebra. . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.3.1 Vectors, Vector Fields, and Scalar Fields. . . . . . . . . . 38 2.3.2 Gradient of a Scalar Field . . . . . . . . . . . . . . . . . . . . 40 2.3.3 Divergence of a Vector Field. . . . . . . . . . . . . . . . . . 41 2.3.4 Curl of a Vector Field. . . . . . . . . . . . . . . . . . . . . . . 42 2.3.5 Relation Between Volume, Surface, and Line Integrals. . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.4 Review of Thermodynamics. . . . . . . . . . . . . . . . . . . . . . . . . 43 2.4.1 Perfect Gas Relations . . . . . . . . . . . . . . . . . . . . . . . 44 2.4.2 First Law of Thermodynamics . . . . . . . . . . . . . . . . . 46 2.4.3 Second Law of Thermodynamics . . . . . . . . . . . . . . . 48 2.4.4 Isentropic Relations. . . . . . . . . . . . . . . . . . . . . . . . . 50 ix x Contents 2.5 Equations of Fluid Motion. . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.5.1 Conservation of Mass . . . . . . . . . . . . . . . . . . . . . . . 51 2.5.2 Conservation of Linear Momentum. . . . . . . . . . . . . . 53 2.5.3 Conservation of Energy. . . . . . . . . . . . . . . . . . . . . . 56 2.5.4 Conservation Form of the Navier-Stokes Equations. . . 60 2.6 Reynolds-Averaged Navier-Stokes Equations . . . . . . . . . . . . . 62 2.6.1 Incompressible Reynolds-Averaged Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.6.2 Compressible Reynolds-Averaged Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 2.6.3 Turbulence Modeling: The k-Epsilon Model. . . . . . . . 67 2.7 Equations of Motion for Inviscid Flows. . . . . . . . . . . . . . . . . 69 2.7.1 Euler Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 2.7.2 Potential Flow Equation. . . . . . . . . . . . . . . . . . . . . . 72 2.8 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3 Transonic Similarity Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.2 Linearized Compressibility Corrections . . . . . . . . . . . . . . . . . 82 3.2.1 2-D Subsonic Flow. . . . . . . . . . . . . . . . . . . . . . . . . 85 3.2.2 Other Subsonic Compressibility Corrections. . . . . . . . 89 3.2.3 2-D Supersonic Flow. . . . . . . . . . . . . . . . . . . . . . . . 99 3.2.4 The Principle of Superposition . . . . . . . . . . . . . . . . . 103 3.2.5 Slender Bodies of Revolution in Subsonic and Supersonic Flow—Linear Theory . . . . . . . . . . . . 106 3.3 Transonic Small Disturbance Theory. . . . . . . . . . . . . . . . . . . 114 3.4 Transonic Similarity Parameters . . . . . . . . . . . . . . . . . . . . . . 117 3.4.1 Other Transonic Similarity Parameters. . . . . . . . . . . . 120 3.5 3-D Planar and Axisymmetric Slender Bodies . . . . . . . . . . . . 123 3.6 Hodograph Transformation. . . . . . . . . . . . . . . . . . . . . . . . . . 126 3.7 Empirical Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 3.8 Approximate Location of Detached Shocks . . . . . . . . . . . . . . 130 3.9 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 4 Shock-Expansion Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 4.2 Lift and Wave Drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 4.3 Bi-Convex Airfoil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 4.4 Axisymmetric and Slender Bodies. . . . . . . . . . . . . . . . . . . . . 183 4.5 Examples and Applications . . . . . . . . . . . . . . . . . . . . . . . . . 188
Description: