Springer Texts in Statistics Peter J. Brockwell Richard A. Davis Introduction to Time Series and Forecasting Third Edition Springer Texts in Statistics SeriesEditors: R.DeVeaux S.Fienberg I.Olkin Moreinformationaboutthisseriesathttp://www.springer.com/series/417 Peter J. Brockwell • Richard A. Davis Introduction to Time Series and Forecasting Third Edition 123 PeterJ.Brockwell RichardA.Davis DepartmentofStatistics DepartmentofStatistics ColoradoStateUniversity ColumbiaUniversity FortCollins,CO,USA NewYork,NY,USA Additionalmaterialtothisbookcanbedownloadedfromhttp://extras.springer.com. ISSN1431-875X ISSN2197-4136 (electronic) SpringerTextsinStatistics ISBN978-3-319-29852-8 ISBN978-3-319-29854-2 (eBook) DOI10.1007/978-3-319-29854-2 LibraryofCongressControlNumber:2016939116 ©SpringerInternationalPublishingSwitzerland1996,2002,2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthematerialisconcerned,specifically therightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway, andtransmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptive names,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,eveninthe absenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelawsandregulationsandthereforefreeforgeneral use. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbookarebelievedtobetrueandaccurate atthedateofpublication.Neitherthepublishernortheauthorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerial containedhereinorforanyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland To Pam and Patti Preface Thisbookisaimedatthereaderwhowishestogainaworkingknowledgeoftimeseries and forecasting methods as applied in economics, engineering, and the natural and social sciences. Unlike our more advanced book, Time Series: Theory and Methods, Brockwell and Davis (1991), this one requires only a knowledge of basic calculus, matrixalgebraandelementarystatisticsatthelevel,forexample,ofMendenhalletal. (1990). It is intended for upper-level undergraduate students and beginning graduate students. Theemphasisisonmethodsandtheanalysisofdatasets.Theprofessionalversion of the time series package ITSM2000, for Windows-based PC, enables the reader to reproduce most of the calculations in the text (and to analyze further data sets of the reader’s own choosing). It is available for download, together with most of the data setsusedinthebook,fromhttp://extras.springer.com. AppendixEcontainsadetailed introduction tothepackage. Verylittlepriorfamiliaritywithcomputingisrequiredinordertousethecomputer package. Thebookcanalsobeusedinconjunction withothercomputerpackagesfor handlingtimeseries.Chapter14ofthebookbyVenablesandRipley(2003)describes howtoperformmanyofthecalculationsusingSandR.ThepackageITSMRofWeigt (2015)canbeusedinRtoreproducemanyofthefeaturesofITSM2000.Thepackage Yuima, also for R, can be used for simulation and estimation of the Lévy-driven CARMA processes discussed in Section 11.5 (see Iacus and Mercuri (2015)). Both ofthesepackages canbedownloaded fromhttps://cran.rproject.org/web/packages. There are numerous problems atthe end ofeach chapter, many ofwhich involve useoftheprogramstostudythedatasetsprovided. Tomaketheunderlyingtheoryaccessibletoawideraudience,wehavestatedsome of the key mathematical results without proof, but have attempted to ensure that the logical structure ofthedevelopment isotherwise complete. (References toproofsare providedfortheinterested reader.) There is sufficient material here for a full-year introduction to univariate and multivariatetimeseriesandforecasting. Chapters1through6havebeenusedforsev- eral years in introductory one-semester courses in univariate timeseries at Columbia University, Colorado StateUniversity, andRoyalMelbourne Institute ofTechnology. Thechapteronspectralanalysiscanbeexcludedwithoutlossofcontinuitybyreaders whoaresoinclined. In viewof theexplosion ofinterest infinancial timeseries inrecent decades, the thirdeditionincludesanewchapter(Chapter7)specificallydevotedtothistopic.Some ofthebasictoolsrequiredforanunderstandingofcontinuous-timefinancialtimeseries models(Brownianmotion,Lévyprocesses, andItôcalculus)havealsobeenaddedas vii viii Preface AppendixD,andanewSection11.5providesanintroductiontocontinuousparameter ARMA(orCARMA)processes. ThediskettecontainingthestudentversionofthepackageITSM2000isnolonger included with the book since the professional version (which places no limit on the lengthoftheseriestobestudied)cannowbedownloadedfromhttp://extras.springer. comasindicatedabove.AtutorialfortheuseofthepackageisprovidedasAppendixE andasearchable file,ITSM_HELP.pdf,givingmoredetailed instructions, isincluded withthepackage. Wearegreatlyindebted tothereadersofthefirstandsecondeditionsofthebook and especially toMatthew Calder, coauthor of thecomputer package ITSM2000and toAnthonyBrockwell,bothofwhommademanyvaluablecommentsandsuggestions. We also wish to thank Colorado State University, Columbia University, the National Science Foundation, Springer-Verlag, and our families for their continuing support duringthepreparation ofthisthirdedition. FortCollins,CO,USA PeterJ.Brockwell NewYork,NY,USA RichardA.Davis April,2016 Contents Preface vii 1. Introduction 1 1.1. ExamplesofTimeSeries 1 1.2. ObjectivesofTimeSeriesAnalysis 5 1.3. SomeSimpleTimeSeriesModels 6 1.3.1. SomeZero-MeanModels 6 1.3.2. ModelswithTrendandSeasonality 7 1.3.3. AGeneralApproachtoTimeSeriesModeling 12 1.4. StationaryModelsandtheAutocorrelation Function 13 1.4.1. TheSampleAutocorrelation Function 16 1.4.2. AModelfortheLakeHuronData 18 1.5. Estimation and Elimination of Trend and Seasonal Components 20 1.5.1. EstimationandEliminationofTrendintheAbsence ofSeasonality 21 1.5.2. EstimationandEliminationofBothTrendand Seasonality 26 1.6. TestingtheEstimatedNoiseSequence 30 Problems 34 2. Stationary Processes 39 2.1. BasicProperties 39 2.2. LinearProcesses 44 2.3. Introduction toARMAProcesses 47 2.4. PropertiesoftheSampleMeanandAutocorrelation Function 50 2.4.1. Estimationofμ 50 2.4.2. Estimationofγ(·)andρ(·) 51 2.5. ForecastingStationary TimeSeries 55 2.5.1. PredictionofSecond-OrderRandomVariables 57 2.5.2. ThePredictionOperator P(·|W) 58 2.5.3. TheDurbin–Levinson Algorithm 60 2.5.4. TheInnovations Algorithm 62 2.5.5. RecursiveCalculationoftheh-StepPredictors 65 ix
Description: