ebook img

Introduction to the Physics of Matter - Basic Atomic, Molecular, and Solid-State Physics PDF

298 Pages·2020·12.694 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to the Physics of Matter - Basic Atomic, Molecular, and Solid-State Physics

Undergraduate Lecture Notes in Physics Nicola Manini Introduction to the Physics of Matter Basic Atomic, Molecular, and Solid-State Physics Second Edition Undergraduate Lecture Notes in Physics Series Editors Neil Ashby, University of Colorado, Boulder, CO, USA WilliamBrantley,DepartmentofPhysics,FurmanUniversity,Greenville,SC,USA MatthewDeady,PhysicsProgram,BardCollege,Annandale-on-Hudson,NY,USA Michael Fowler, Department of Physics, University of Virginia, Charlottesville, VA, USA Morten Hjorth-Jensen, Department of Physics, University of Oslo, Oslo, Norway Michael Inglis, Department of Physical Sciences, SUNY Suffolk County Community College, Selden, NY, USA Undergraduate Lecture Notes in Physics (ULNP) publishes authoritative texts covering topics throughout pure and applied physics. Each title in the series is suitable as a basis for undergraduate instruction, typically containing practice problems,workedexamples,chaptersummaries,andsuggestionsforfurtherreading. ULNP titles must provide at least one of the following: (cid:129) An exceptionally clear and concise treatment of a standard undergraduate subject. (cid:129) A solid undergraduate-level introduction to a graduate, advanced, or non-standard subject. (cid:129) A novel perspective or an unusual approach to teaching a subject. ULNPespeciallyencouragesnew,original,andidiosyncraticapproachestophysics teaching at the undergraduate level. The purpose of ULNP is to provide intriguing, absorbing books that will continue to be the reader's preferred reference throughout their academic career. More information about this series at http://www.springer.com/series/8917 Nicola Manini Introduction to the Physics of Matter Basic Atomic, Molecular, and Solid-State Physics Second Edition 123 NicolaManini Department ofPhysics University of Milan Milan,Italy ISSN 2192-4791 ISSN 2192-4805 (electronic) Undergraduate Lecture Notesin Physics ISBN978-3-030-57242-6 ISBN978-3-030-57243-3 (eBook) https://doi.org/10.1007/978-3-030-57243-3 1stedition:©SpringerInternationalPublishingSwitzerland2014 2ndedition:©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNature SwitzerlandAG2020 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseof illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface This book fulfills a twofold purpose: to provide a pedagogic panorama of the current microscopic understanding of the basic physics of matter and to help stu- dentstoacquireaquantitativefeelingofthetypicalordersofmagnitudeofthemain physical quantities (energy, time, temperature, length) involved in the specific conditions relevant for “matter” in its atomic, molecular, and condensed forms. Both tasks are favored by keeping structurally and conceptually well distinct the analysis of the adiabatically separate motions of electrons and of atoms. This dis- tinct treatment is organized in close parallel for molecules and for solids. While keeping different degrees of freedom well distinct, formal likeness is noted whenever useful, following the standard strategy of similar solutions for similar equations. Noteworthy examples of this approach include the spherically symmetricmotionofelectronsinatomsandofnucleiindiatomicmolecules,aswell as applications of the Fermi-gas model to electrons in metals and to fluid 3He. This book includes several detailed derivations, when they are useful to understand the physical reasons of certain facts. These details deserve being understood and then forgotten. In contrast, a number of mathematical relations summarize essential physical information and results, and are therefore worth retaining. As a guide for the reader, a gray background highlights these essential equations. Numbers and orders of magnitude are important, at least as much as mathe- matical derivations, probably more. A broad selection of numerical problems invites the reader to familiarize with the conceptually simple but often practically intricatenumericalevaluationsandunitconversionsrequiredtoreachquantitatively correct estimates in real-life or laboratory conditions. At variance with many textbooks in this field, the present one adopts SI units throughout.Thischoicedoesnotonlyfollowtheinternationalrecommendation,but alsohelpstocompareallresultswiththeoutputofinstruments.Theoneindulgence to non-SI units is a frequent quotation of energies in eV, which represents a practical unit for most atomic-scale phenomena and converts easily to Joule. v vi Preface As a basic textbook, this one focuses on what is currently well under control: a selection of well-established systems, phenomena, experimental techniques, and conceptual schemes. From this panorama, the reader should be warned against gatheringthefalseimpressionthatthelastwordhasbeensaidaboutthephysicsof matter. On the contrary, physicists, chemists, materials scientists, and biologists currently investigate matter in its multi-faceted forms and collect a wealth of experimental data, for which understanding is often only qualitative and partial. Creativity and insight help scientists to develop novel approximate schemes, or models, to interpret these data and achieve a better understanding of the intimate structure and dynamics of matter. Not everything is equally important. For a reader wishing to focus on a bare minimumcontent,whilestillgraspingthebasicsofthephysicsofmatter,theauthor suggests to skip the following non-essential topics: (cid:129) the spectral-broadening mechanisms—Sect. 1.2, (cid:129) the hyperfine structure of H—Sect. 2.1.8, (cid:129) perturbation theory applied to the 2-electron atom—Sect. 2.2.4, (cid:129) the details of the variational calculation for H+ in Sect. 3.2.1, 2 (cid:129) the electronic molecular transitions discussed in Sect. 3.3, (cid:129) the density-operator formalism—Sect. 4.1.2, (cid:129) the foundation of the canonical ensemble—Sect. 4.2 before Eq. (4.10), (cid:129) the connection of entropy and statistics—Sect. 4.2.2, (cid:129) the laser—Sect. 4.4.1, (cid:129) the tight-binding and plane-waves models for the electron bands of crystals— Sect. 5.2.1, (cid:129) theextrinsicsemiconductorsandtheirtechnologicalapplications,frompage214 to the end of Sect. 5.2.2. On the other hand, a reader who wishes to broaden her/his view of the field beyondthetopicscoveredbythepresenttextbookcanfollowextendedintroductory treatments, for example, in Refs. [1, 2, 3, 4]. Specialized texts focus on advanced approachesclosertothefrontiersofresearch, coveringboththetheoreticalandthe experimental side. The reader is invited to browse in particular Refs. [5, 6, 7] for atomic physics, Refs. [6, 8, 9] for molecules, and Refs. [10, 11, 12] for solid-state physics. Finally, this textbook focuses on the present-day understanding of the physics of matter, omitting most of the fundamental experiments and conceptual steps through which the scientific community reached this understanding. Reference [13] provides an insider’s view of the historical evolution of the basic concepts in this field. The present volume draws its initial inspiration from Luciano Reatto’s course delivered in the 1990s at the University of Milano. In the past, the bulk of this volume was made available as lecture notes, first released on January 15, 2004. Precious feedback and suggestions from Giovanni Onida, other colleagues, and several students in the Milan Physics Diploma course prompted numerous cor- rectionsandimprovementstothesecondedition.Comparedtothefirstedition,the Preface vii second edition also benefits from the addition of an Appendix about lighting applications, a few new problems, a periodic table, and an index. The problems includedinthisbook,plusmanymore,areavailableinItalianatthewebsitehttp:// materia.fisica.unimi.it/manini/dida/archive_exam.html. The author acknowledges the warm feedback and interest from the students in physicsattheUniversityofMilano;thisbookwasoriginallywrittenforthem.Last but not least, the patient care and love of the author’s family was a primary ingredient in nurturing the present textbook. Milan, Italy Nicola Manini June 2020 Contents 1 Introductory Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Basic Ingredients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Typical Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.2 Perspectives on the Structure of Matter (Contains Spoilers). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Spectra and Broadening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 One-Electron Atom/Ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.1 The Energy Spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.2 The Angular Wavefunction. . . . . . . . . . . . . . . . . . . . . . . 16 2.1.3 The Radial Wavefunction. . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.4 Orbital Angular Momentum and Magnetic Dipole Moment| . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.5 The Stern-Gerlach Experiment . . . . . . . . . . . . . . . . . . . . 22 2.1.6 Electron Spin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.1.7 Fine Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.1.8 Nuclear Spin and Hyperfine Structure . . . . . . . . . . . . . . . 31 2.1.9 Electronic Transitions, Selection Rules . . . . . . . . . . . . . . 33 2.1.10 Spectra in a Magnetic Field . . . . . . . . . . . . . . . . . . . . . . 36 2.2 Many-Electron Atoms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.2.1 Identical Particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.2.2 The Independent-Particles Approximation . . . . . . . . . . . . 40 2.2.3 Independent Electrons in Atoms . . . . . . . . . . . . . . . . . . . 43 2.2.4 The 2-Electron Atom . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.2.5 The Hartree-Fock Method. . . . . . . . . . . . . . . . . . . . . . . . 48 2.2.6 Electronic Structure Across the Periodic Table. . . . . . . . . 52 2.2.7 Fundamentals of Spectroscopy . . . . . . . . . . . . . . . . . . . . 54 ix x Contents 2.2.8 Core Levels and Spectra. . . . . . . . . . . . . . . . . . . . . . . . . 56 2.2.9 Optical Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.2.10 Electric-Dipole Selection Rules. . . . . . . . . . . . . . . . . . . . 67 3 Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.1 The Adiabatic Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.2 Chemical and Non-chemical Bonding . . . . . . . . . . . . . . . . . . . . . 75 þ 3.2.1 H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 2 3.2.2 Covalent and Ionic Bonding . . . . . . . . . . . . . . . . . . . . . . 80 3.2.3 Weak Non-chemical Bonds . . . . . . . . . . . . . . . . . . . . . . 84 3.2.4 A Classification of Bonding . . . . . . . . . . . . . . . . . . . . . . 88 3.3 Intramolecular Dynamics and Spectra . . . . . . . . . . . . . . . . . . . . . 89 3.3.1 Rotational and Rovibrational Spectra. . . . . . . . . . . . . . . . 90 3.3.2 Electronic Excitations. . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.3.3 Zero-Point Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4 Statistical Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.1 Introductory Concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.1.1 Probability and Statistics . . . . . . . . . . . . . . . . . . . . . . . . 102 4.1.2 Quantum Statistics and the Density Operator. . . . . . . . . . 104 4.2 Equilibrium Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.2.1 Connection to Thermodynamics . . . . . . . . . . . . . . . . . . . 107 4.2.2 Entropy and the Second Principle . . . . . . . . . . . . . . . . . . 110 4.3 Ideal Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.3.1 The High-Temperature Limit . . . . . . . . . . . . . . . . . . . . . 113 4.3.2 Low-Temperature Fermi and Bose Gases. . . . . . . . . . . . . 125 4.4 Matter-Radiation Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 4.4.1 The Laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5 Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.1 The Microscopic Structure of Solids . . . . . . . . . . . . . . . . . . . . . . 150 5.1.1 Lattices and Crystal Structures . . . . . . . . . . . . . . . . . . . . 157 5.1.2 The Reciprocal Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . 166 5.1.3 Diffraction Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 169 5.2 Electrons in Crystals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 5.2.1 Models of Bands in Crystals. . . . . . . . . . . . . . . . . . . . . . 186 5.2.2 Filling of the Bands: Metals and Insulators . . . . . . . . . . . 197 5.2.3 Spectra of Electrons in Solids. . . . . . . . . . . . . . . . . . . . . 223 5.3 The Vibrations of Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 5.3.1 The Normal Modes of Vibration. . . . . . . . . . . . . . . . . . . 228 5.3.2 Thermal Properties of Phonons. . . . . . . . . . . . . . . . . . . . 235 5.3.3 Other Phonon Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.