ebook img

Introduction to the Numerical Modeling of Groundwater and Geothermal Systems: Fundamentals of Mass, Energy and Solute Transport in Poroelastic Rocks. Volume 2 PDF

451 Pages·28.743 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to the Numerical Modeling of Groundwater and Geothermal Systems: Fundamentals of Mass, Energy and Solute Transport in Poroelastic Rocks. Volume 2

CHAPTER 1 Introduction Accessibility to water and energy in sufficient quantity and quality are essential for human development. Hence provision of both these commodities accounting for their sustainable use and the need to mitigate global climate change by reducing greenhouse gas emissions are pri- marytasksofthe21stcentury.Increasingstressonwaterresources,andtheneedtobetterassess ‘clean’ energy resources such as geothermal energy, require the development and application ofsophisticated,state-of-thearttoolssuchasnumericalmodeling.Toillustratethispresent-day worldconcern, wewillstartthisintroductorychapterwithsomeinformation, mostlyfromthe UNorganizationsontheglobalwaterproblemandfromtheIntergovernmentalPanelonClimate Changeabouttheprocessofglobalwarmingrelatedtotheenergyissueandcitetheirmostimpor- tantfindings(sections1.1and1.2).Thesereportshighlighttheimportanceofbetteraddressing theseissuesguaranteeingthedevelopmentandsurvivalofhumanity. 1.1 THEWATERPROBLEM—THEUNVISION ‘‘Global freshwater consumption rose sixfold between 1900 and 1995—more thantwicetherateofpopulationgrowth.Aboutonethirdoftheworld’spopula- tionalreadylivesincountriesconsideredtobe‘waterstressed’—thatis,where consumptionexceeds10%oftotalsupply.Ifpresenttrendscontinue,twooutof everythreepeopleonEarthwillliveinthatconditionby2025.’’ ∗ KofiAnnan(2000) Noonecanlivewithoutwater.Waterandairaretheessentialelementsforlifeinthisplanetand forthedevelopmentandsurvivalofhumanity.Neithernaturenorhumantechnologycangenerate orcreatemorewater. ThewaterexistingonEarthtransitsthroughthecontinuoushydrological cycleofevaporation,condensation,infiltration,andflow.Thiswateristhesamefluidthatexisted formillionsofyears.Thegreatdifferencenowadaysisitsqualityanddistribution. Ithasrecentlyenteredpublicawarenessthatdrinkingwaterisafragileandrarecommodity. Theimmensityoftheoceansandtheconstantrenewalofthewatercyclecreatetheillusionthat water is a simple and eternal fluid. However, recent figures from the UN (UNEP 2009) show that some 1200 million human beings lack access to drinking water and another 2000 million receive contaminated water. In other words, serious deficiencies in the supply and quality of thisvitalliquidcurrentlyaffectalmosthalfofhumanity(February2010:6,912,334,200;source: http://www.breathingearth.net/).Theecological,social,technical,andpoliticalproblemsrelated tothesupplyofwaterarenotcausedbyitsamount,butbytheirregulardistributionofwateron theplanet,aswellasthepollutinginfluenceofhumanactivity. TheEarthcontainsapproximately1400×106km3ofwaterandtheoceanscontain97.5%of thistotal(1365×106km3,UNEP2009).Freshwaterresourcesrepresentabout2.5%ofthetotal volume (35 million km3). Of the total water, 1.7% (24 million km3) is in the form of ice and perennialsnowcoverinthemountains,theAntarcticandArcticregions.Therefore,only0.8% ∗ Source:KofiAnnanin:WethePeoples,2000. 1 “ch01” — 2010/6/2 — 19:50 — page 1 — #1 2 Introductiontothenumericalmodeling (11millionkm3)oftheEarth’svitalfluidisavailabletohumanityandeventhissmallportionis subjecttoconstantpollution.(UNEP2009). Each year the oceans lose some 5 × 105 km3 of water into the atmosphere by evapora- tion. Only 9% of this amount falls as rain on land. Some 8 million km3 is stored in the form of groundwater basins, soil moisture and permafrost. This constitutes about 73% of all the freshwater that is potentially available for human use. Lakes and rivers contain approximately 105,000 km3 (0.3%) of the world’s freshwater (UNEP 2009). Many ecologists, scientists and international experts believe that water availability will become a critical factor for the sur- vivalofmankindintheverynearfuture.Waterissueswilldeterminetheveryfutureoflifeon Earth. Today,waterisconsideredasafinite,valuableresourceofinequitableandunbalancedworld- wide distribution in both social and geographical spaces. Industrial wastes, pesticides, natural arsenic, anddiversechemicalscausecontaminationofdrinkablewater. Thedemandincrement produced by the demographic augmentation and water wastage creates a dangerous situation. Population pressures, increasing demands for space and resources, and poor economic perfor- mances can all undermine the sustainable use of water. Since 1900, water demand has been multiplied six times (UNEP 2009). Since 1940 the world population has an annual growth of about2%whilewaterextractionincreasesabout3%peryear(LeónDiez2005).Atthepresent timepeopleneedanaverageofbetween27and200litersperdaytosatisfytheirneeds(León Diez 2005). Africa and the Middle East are the two regions of the world where there is less water. The American continent is the richest in hydraulic resources (León Diez 2005). The inequity in the consumption of water is evident when comparing figures of the UN (2003): Brazil, Canada, China, United States, India and Russia have the 40% of rivers and lakes of the planet. In Canada each inhabitant disposes of 91,640 m3 of water per year; in Australia, 26,032 m3; in Mexico, 4547 m3; in South Africa, 1109 m3 and in Egypt, 29 m3. According totheUN,(LeónDiez2005)thequantityofwaterthatapersonneedsisabout5000m3/year. Havinglessthan1700m3/yeariscalledwaterstress;havinglessthan1000m3/yearisconsidered scarcity. TheUnitedNationsEnvironmentProgramme(UNEP)compiledanupdatedaveryusefulreport (VitalWaterGraphics)onthestateoftheworld’swaters.Thisreportfocusesonthecriticalissues of water quantity, quality and availability—issues that are vital to the quality of life on Earth. Highlightsfromassessmentactivitiesoverthepasttwodecades,revealthefollowingconclusions (citedfromUNEP2009): • Freshwaterresourcesareunevenlydistributed,withmuchofthewaterlocatedfarfromhuman populations.Manyoftheworld’slargestriverbasinsrunthroughthinlypopulatedregions. • Groundwaterrepresentsabout90%oftheworld’sreadilyavailablefreshwaterresources,and some1.5billionpeopledependupongroundwaterfortheirdrinkingwatersupply.Groundwater is by far the most abundant and readily available source of freshwater, followed by lakes, reservoirs,riversandwetlands. • Theamountofgroundwaterwithdrawnannuallyisroughlyestimatedbetween600and700km3, representingabout20%ofglobalwaterwithdrawals.Acomprehensivepictureofthequantity ofgroundwaterwithdrawnandconsumedannuallyaroundtheworlddoesnotexist. • Agriculturalwateruseaccountsforabout75%oftotalglobalconsumption, mainlythrough cropirrigation,whileindustrialuseaccountsforabout20%,andtheremaining5%isusedfor domesticpurposes. • Itisestimatedthattwooutofeverythreepeoplewillliveinwater-stressedareasbytheyear 2025.InAfricaalone,itisestimatedthat25countrieswillbeexperiencingwaterstress(below 1700m3 percapitaperyear)by2025.Today,450millionpeoplein29countriessufferfrom watershortages. • Cleanwatersuppliesandsanitationremainmajorproblemsinmanypartsoftheworld,with 20%oftheglobalpopulationlackingaccesstosafedrinkingwater.Water-bornediseasesfrom faecalpollutionofsurfacewaterscontinuetobeamajorcauseofillnessindevelopingcountries. “ch01” — 2010/6/2 — 19:50 — page 2 — #2 Introduction 3 Pollutedwaterisestimatedtoaffectthehealthof1.2billionpeople,andcontributestothedeath of15millionchildrenannually. 1.2 THEENERGYPROBLEM—VISIONOFTHEINTERGOVERNMENTAL PANELOFCLIMATECHANGE ‘‘Modern society continues to rely largely on fossil fuels to preserve economic growthandtoday’sstandardofliving.However,forthefirsttime,physicallimits of the Earth are met in our encounter with finite resources of oil and natural gasanditsimpactofgreenhousegasemissionsontotheglobalclimate. Never beforehasaccurateaccountingofourenergydependencybeenmorepertinentto developingpublicpoliciesforasustainabledevelopmentofoursociety,bothin theindustrialworldandtheemergingeconomies.’’ ∗ Minutes,DebateofSenate(EersteKamer),2009(inDutch) Today(2010)theworldisconsumingabout85millionsbarrelsofoil/day(Mbod).In2008,this consumptionwas86MbodandwasgrowinginthatperiodbymorethanoneMbodperyear.This incrementisequivalenttodiscoveranewoilprovincelikeAzerbaijaneachyear.OilpricesinJuly 2008reached145.29USDperbarrel(WTI).Becauseoftheeconomicalcrisis,oilconsumption reduced0.5Mbodin2008and1.75Mbodin2009,andtheoilpricesdecreasedaswell.However, thepriceinFebruary2010wasaround80USDperbarrelandthetrendistogrowagain(Oil- Price.Net2010).Between40and50%ofworldwideoildemandisfortransportation.Inadditionto thehugeamountofgasolinerequiredbytheindustrializedterritories,thereisanuncontrollable increase in the appetite for automotive fuel in several countries of Asia, Latin America, and Africa.Ontheotherhand,theproductioncostsofoilinreservoirslocatedindifferentregionsare increasinglyhigh(ChevronCorporation2009).ThetotalOPEC’soilsparecapacitywas10Mbod in1995; thiscapacitydecreasedto2Mbodin2008. Withorwithoutcrisis, thereisnolonger asafetymargintoensurepricestabilityinthefaceofdemandspikesandsupplyinterruptions. Therefore,intheverynearfuturewewillhavelimitedoilsupply,increasingdemand,higheroil prices,increasingpollution,andenvironmentalimpactfromglobalemissionsofgreenhousegases. TheWorkingGroupIoftheIntergovernmentalPanelonClimateChange(IPCC),(Solomon etal.2007,andIPCChomepagehttp://ipcc-wg1.ucar.edu/wg1/)providedanauthoritativeinter- nationalassessmentofhowtheactivitiesofthehumanindustryareaffectingtheradiativeenergy balance in the atmosphere. Their objective is to provide a scientific understanding of climate change. Concerning the key question: how are temperatures on Earth changing? the Working GroupIfurnishedthefollowingconclusiveinformation: ‘‘Instrumental observations over the past 157 years show that temperatures at the surface haverisenglobally, withimportantregionalvariations. ... Anincreasingrateofwarminghas taken place over the last 25 years, ... Confirmation of global warming comes from warming oftheoceans,risingsealevels,glaciersmelting,seaiceretreatingintheArcticanddiminished snowcoverintheNorthernHemisphere,... (and)decreasesinthelengthofriverandlakeice seasons.... theoceansarewarming;andsealevelisrisingduetothermalexpansionoftheoceans andmeltingoflandice... Expressedasaglobalaverage,surfacetemperatureshaveincreased ◦ byabout0.74 Coverthepasthundredyears(between1906and2005;Figs.1.1and1.2).’’ Thehumanimpactonclimateduringthiseragreatlyexceedsthatduetoknownchangesin natural processes, such as solar changes and volcanic eruptions (Solomon et al. 2007) (Fig. 1.2). In the light of the available information, there is an urgent need to replace hydrocarbons byother, diversified, andcleanprimarysourcesofenergy. Solar, wind, andgeothermalenergy ∗ Source:MinutesofthedebatoftheSenate(EersteKamer)oftheDutchParliament,March31st,2009 http://www.eerstekamer.nl/stenogram/stenogram_254/f=x.pdf. “ch01” — 2010/6/2 — 19:50 — page 3 — #3 4 Introductiontothenumericalmodeling Figure1.1. Annualglobalmeanobservedtemperatures(blackdots,fromtheHadCRUT3dataset)along withsimplefitstothedata.Thelefthandaxisshowsanomaliesrelativetothe1961to1990 average and the right hand axis shows the estimated actual temperature. Linear trend fits tothelast25(yellow), 50(orange), 100(purple)and150years(red)areshown, andcorre- spondto1981to2005, 1956to2005, 1906to2005, and1856to2005, respectively. From about1940to1970theincreasingindustrialisationfollowingWorldWarIIincreasedpollution inthenorthernhemisphere,contributingtocooling,andincreasesincarbondioxideandother greenhousegasesdominatetheobservedwarmingafterthemid-1970s.(Solomonetal.2007). g) k g/ μ O ( kg) N2 g/ g/kg), μCH(4 m O(2 C Figure1.2. Summary of the principal components of the radiative forcing of climate change (Solomon etal.2007). aresomeofthesesourcesabletoreplaceadvantageouslycoal,oil,gasandnuclear.Particularly, submarineoffshorehydrothermalenergyisoneofthemostimportantandenormousgeothermal sourcethathasneverbeenusedonEarth(Suárez-Boscheetal.2005).Supercriticalgeothermal resources will enable the generation of electricity on an efficient, economical basis through turbine-generators on the ocean floor that will supply the grid’s demand for electricity. This approach generates electricity from geothermal energy from a vast, high-temperature resource never before accessed. Technological improvements will increase efficiency enough to enable geothermal energy to compete with traditional power plants on cost. This approach will also accessmuchmoreextensivegeothermalresourcesthanthelandconventionalresourcescurrently used. “ch01” — 2010/6/2 — 19:50 — page 4 — #4 Introduction 5 1.3 MULTIPHYSICSMODELINGOFISOTHERMALGROUNDWATER ANDGEOTHERMALSYSTEMS ‘‘Scientificcomputinghasoftenbeencalledthethirdapproachtoscientificdiscov- ery,emergingasapeertoexperimentationandtheory.Historically,thesynergy betweentheoryandexperimentationhasbeenwellunderstood.Experimentsgive insightintopossibletheories,theoriesinspireexperiments,experimentsreinforce orinvalidatetheories,andsoon.Asscientificcomputinghasevolvedtoincreas- inglyproducecomputationalresultsthatmeetorexceedthequalityoftheoretical and experimental results, it has become and indispensable third approach... Thesynergyoftheory,experimentation,andcomputationisveryrich.’’ ∗ MichaelA.Heroux,PadmaRaghavanandHorstD.Simon,2006 Thescientificstudyoftransportprocessesinnaturalporousfracturedsystems,suchasaquifers, petroleum, gas and geothermal reservoirs, is relatively recent. Over the last 40 years, sev- eral research methods have been developed based on experimental data and mathematical approaches. To understand the complicated mechanisms of flow occurring in these scenarios, variousmathematicalmethodshavebeenemployed:analyticalmethodswereinitiallyused,fol- lowed by analog models and most recently, numerical models. One of the main problems is thedifficultyinaccuratelyrepresentingthedimensionsandspatialdistributionoffracturesand faultscreatedbygeologicandtectonicprocessesofarandomnature. Inhydrothermalsystems (convection-dominatedgeothermalreservoirs),thetransportofmass,momentumandenergyis anon-isothermalprocesswithphasechanges,wheredissolvedsalts,non-condensablegasesand thedistributionofpetrophysicalparametersareofgreatimportance. Inthescientificstudyofnatureitisnecessarytomakenumericaloperationsofdiversedegrees ofcomplexity,fromelementarytohighmathematicalsophistication.Thedevelopmentofmathe- maticalmodelsisjustifiedbythehelptheybringintheunderstandingandverificationofspecific mechanismsandbehaviorsofnaturalsystems.Inaddition,theircostisconsiderablylowercom- pared to any other technique. Furthermore, numerical models can be subjected, without any risk, tothemostcriticaloperationconditions. Theutilityofmodelingisspecifictothenatural systems because physical scale models of them cannot be made in the laboratory. The ‘‘pre- diction’’and‘‘retro-diction’’capacitiesofmathematicalmodelsallowthequantitativeestimation offuturebehaviorsthatareyettobeobserved,aswellastheestimationofprocessesthatareno longerobserved,butthatweretheantecedentofthecurrentphenomenon.Numericalsimulation isirreplaceableasatoolforanalysisandsynthesis,toachieveanongoingcoherentintegration ofinformationonthereservoir,asitslifespanadvances.Otherresearchtechniquesofferonlya partialperspectiveontheglobalsystem.Themathematicalmodelanditsassociatednumerical codecanbeusedtocombineandtoverifyseveralcomplexhypothesesandtotestthemagainst theobservedfactsanddata.Petroleum,gas,waterandheatreservoirsareexamplesofcomplex naturalsystems.Tounderstandthemassandenergyflowsinthesesystems,thedevelopmentof integratedmodelsisrequired. Inthisbookwedefineaquifersintheclassicalsense:groundwatersystemsoflowtemperature (<37◦C), which correspond generally to freshwater resources, providing water for drinking, irrigation and industrial purposes. With very few exceptions, these aquifers can generally be treatedasisothermalsystems,wheretemperaturevariationsintimeandspacearenotofinterest. Inaddition,wewillfocusongeothermalsystemsofvariabletemperature(>37◦C),whichareused asenergyresourceseitherfordirectuseorforelectricpowergeneration.Thesesystems—with theexceptionofverysimplecases—shouldbetreatedasnon-isothermalreservoirsandinsome instances, theoccurrenceofboththeliquidandthevaporphaseofwaterhastobeconsidered. Thepresenceofotherphasessuchasnon-condensablegasesanddissolvedspeciessuchasions, ∗ Source:ParallelProcessingforScientificComputing,SIAM,2006. “ch01” — 2010/6/2 — 19:50 — page 5 — #5 6 Introductiontothenumericalmodeling furtherincreasethecomplexityofthesystem.Tosimplifythenomenclature,wewilldistinguish these two groups with regard to their use, by referring to the first group as ‘‘cold aquifers’’ (isothermalgroundwater,freshwateraquifers,etc.)andthesecondgroupas‘‘geothermalsystems’’ (geothermalreservoirs, geothermalresources, geothermalfluid, etc.). Itisworthremembering thatthephysicallawsandmathematicaldescriptionswhichapplytogeothermalsystemsarealso validforisothermalaquifersystems. Numerousinteractingparameters,variablesandfunctionsdrivethemovementofgroundwater andsteam,andthetransportofheat,solutesandgases.Withtheexceptionofsomeveryspecial cases,thesetransportprocessesarecoupledthrough(1)theinterstitialporevelocity,(2)thedepen- denceoffluiddensityonpressure,temperatureandsolute-massfraction,(3)thedependenceof thefluidviscosityontemperatureandsolute-massfraction,and(4)therockporoelasticity.Asa consequencetheseprocessescanonlybedescribedusingnumericalmethods.Theinfluencesof thenumerousvariables,whichmaybefunctionsofspaceandtimeandmayalsobedependenton temperature,pressure,etc.,governmassandheattransportandtheirinteractions.Allofthesefunc- tionsshouldbeconsideredatthesametime.Hence,mathematical,computationalandnumerical modelingbecomevitaltoolsfortheanalysisofisothermalaquifersandgeothermalsystems. Themostimportantproblemforthegeneralscientificdevelopmentofreservoirengineeringis thedearthofdatainsomeareasanditsabundanceinothers.Thenatureofthisdisciplinemeans thatitisalwaysnecessarytoformulateideasbasedonincompleteinformation.Itisalsonotpos- sibletoconstructphysicalscalemodelswhichfullyrepresentthereservoir.Computernumerical simulationcanthenachieveanintegraldetaileddescriptionofthereservoirbyreproducingthe available robust data. Once some approximate reproduction is achieved, extrapolation may be applied to predict the future behavior of the system as it is subjected to different exploitation scenarioswithdifferentlevelsofuncertainty. As mentioned above, the principal difficulty in establishing an accurate numerical model is due to the very limited availability of spatial and chronological field data. This can be readily appreciatedifweconsider,forexample,theparameterdispersivity.Itisnowwellrecognizedthat thisparameter,whichisimportantinmodelingsolutetransportinaquifers,isnotmeasurablein fieldsituationsunlesswehaveaverywell-definedsimpleaquiferfabric, suchasthatfoundat some experimental test sites. For real problems, dispersivity is merely a fitting parameter that covers our lack of knowledge of the true flow patterns. It cannot be inexpensively measured exceptintheimmediatevicinityofawell.Furthermore,itisoftenspatial-scale-dependentand time-dependent;thus,asingleconstantvaluedoesnotoftenadequatelydescribewhatwemeasure orwishtopredictinthefield.Suchalackofinputdatamustbeovercomebyindirectestimationof dataranges,andthemodelhastobeappliedcarefullytoobtainusefulresultsfromthemodeling analysis. Therefore, a good understanding of the limitations of the data and modeling tools is vitalfortheintelligentapplicationofmodeling. 1.4 MODELINGNEEDSINTHECONTEXTOFSOCIAL ANDECONOMICDEVELOPMENT Theavailabilityoffreshwaterandenergyareintrinsicallylinkedtohumansocialandeconomic development.Waterandenergyresourcesareincreasinglylimited.Atthesametime,thedemand fortheseresourcesisincreasingsharplyduetopopulationandeconomicgrowth.Thiseffectis greatestinthedevelopingworldwiththeirhigherpopulationgrowthrates,theirfast-expanding emergingeconomiesandrelatedincreaseinlivingstandards.Thiscanbeclearlydemonstrated usingtheparameter‘‘electricitydemand’’,theworld-averageofwhichispredictedtoincreaseby afactoroftwofrom2004to2030(EIA2007),withanannualaveragegrowrateof3.5%indevel- opingcountries(non-affiliatedwithOECD:OrganizationforEconomicCooperationandDevel- opment),comparedwithagrowthrateof1.3%inindustrializedcountries(OECD)(EIA2007). Several regions of the planet are experiencing a worsening water shortage. The supply of freshwaterisacrucialissueinthemanycountriesthathaveverylimitedresources.Forexample, “ch01” — 2010/6/2 — 19:50 — page 6 — #6 Introduction 7 theMediterraneanregionisconsideredtobe‘‘poor’’inwaterbecause180millionpeopleliving there have less than 1000 m3 per capita per year (LeMonde, 23 December, 2008). Of these, sixty million are surviving with less than 500 m3/year. This situation is worsening because of increasingpopulationgrowth,theconsequencesofclimatechangeandpollution,whichrenders thewaterunsuitableforconsumption. Inmanyregions, riversandaquifersaresharedbetween differentcountries,whichincreasestheriskofconflict.SomeexamplesaretheGuaraníaquiferin SouthAmerica,theNubiansandstoneaquifersinnorthernAfrica,theKarooaquifersinsouthern Africa, the Vechte aquifer in western Europe and the Slovak Karst-Aggtelek aquifer and the PradedaquiferinCentralEurope.Nationsfacingalackofwaterlookfirsttosecurenewsources ofsupplybytheexpansionofdrilling, thecreationofdams, andtheconstructionofpipelines. These policies have their limits due to problems associated with overexploitation of aquifers, jeopardizingthenaturalgroundwaterrecharge,ordrawingonfossilreserves. Inconsequence,thesecurityoflong-termfreshwaterandenergysuppliesisaglobalcauseof concern.Inordertomeetfuturefreshwaterandenergydemands,itwillbenecessarytodevelop ‘‘improvedtools’’forbetterexplorationandexploitationofgroundwaterresources,whichconsti- tuteover99%oftheworld’sfreshwaterandenergysourcesincludingthegeothermalresources, whichhaveapotentialforpowergenerationthatismuchgreaterthanthatofallfossilfuelresources combined. Geothermal resources can be tapped to meet the increasing demand for electric powerbyapplyingmodernheat-exchangertechnologies,binary-fluids,drilling-technologies,and submergible-pumps.Thesetechnologiesallowtheexploitationofpreviouslytechnicallyandeco- nomicallyinaccessiblelow-enthalpy(<150◦C)convection-dominatedgeothermalresourcesand conduction-dominatedenhancedgeothermalsystems(EGS)(both,high-andlow-enthalpysys- tems)thatarefoundinpracticallyeverycountryontheEarth(ChandrasekharamandBundschuh 2008). Althoughnumericalmodelinghasbeenusedinpastdecadesasastandardapplicationindiffer- entfieldsofmechanical,civilengineeringanddesignitsapplicationtoisothermalgroundwater systemsandgeothermalsystemshasdevelopedslowlyduringthelastfourdecadesandstilltoday isnotimplementedtoitsoptimalcapacity. Theimprovementofcomputertechnologiesduring the last two decades allows actual modeling of complex coupled subsurface processes, which wasnotpossibleafewyearsago. Thisdevelopmentinhardwaretodaymakesthelimitationof field-datatheprincipallimitationoftheapplicationofnumericalmodelinginhydrogeologyand geothermics. Beforewedescribeanaturalreal-worldproblem,suchasanisothermalaquifersystem(fresh- waterresources),orageothermalsystem(non-isothermalfluids)byapplyingnumericalmodeling, itshouldbeappreciatedthatthesesystemsaremuchmorecomplexthanmostothermechanical engineering problems, where numerical modeling has been used as a standard tool for several decades.Anisothermalaquifersystemisacomplexnaturalundergroundsysteminvolvingcou- pled mechanisms which control mass, solute, and energy transfer in poroelastic rocks, with the Earth’s surface acting as a boundary. In the case of geothermal systems, the circulation of hydrothermal fluids, comprising liquid, steam, and gases, is a fundamental complex coupled processcontrollingmass, soluteandenergytransferfromtheEarth’smantleandcrustthrough thesubsurfaceuptothesurface,wheregeothermalfluidsmayemergeashotsprings,fumaroles orsteamvents. Inthefollowingpartofthischapterwewilldiscussrecentdevelopmentsintheareaoffreshwater and energy resources and give some examples of the worldwide importance of increasing the implementationofnumericalmodelingforimprovedassessmentandsustainableexploitationof theseresources,andforproblemsolving. 1.4.1 Theroleofgroundwaterfordrinking,irrigation,andotherpurposes Increasinglimitationsontheavailabilityofsurfacewatercausedbyitsseasonalfluctuationsand itscontinuouslyqualitydegradationduetoanthropogeniccontamination,makegroundwaterthe principalwatersourceinmanyareas.Theimportanceofgroundwaterwillundoubtedlyincrease “ch01” — 2010/6/2 — 19:50 — page 7 — #7 8 Introductiontothenumericalmodeling inthefutureasitisrequiredasdrinkingwaterandforcropirrigationtosustainfoodsuppliesto anincreasingworldpopulation(Bhattacharyaetal.2008).However,groundwaterresourcesare under increasing stress, both in terms of quantity and quality. This, together with the growing importanceofgroundwater, demandsabetterunderstandingofthecriticalprocessesrelatedto aquifer systems, which necessitates the development and application of improved tools, such as numerical modeling, to permit the identification and quantification of processes occurring in the aquifer and allow the prediction of these processes and their effects. This action should mitigatethenegativeimpactsoftheseprocessesandhelptoidentifyoptimalapproachesforthe assessment,management,andprotectionofgroundwaterresources,inordertoachievelong-term sustainability. Groundwaterflowsimulationcanbeappliedtoinvestigategroundwaterrechargeandrecovery, wheretheconsequenceofthegroundwaterwithdrawalthroughwells, horizontalwellsoffilter galleriesonthenaturalgroundwaterflowfield(e.g.decreaseofthegroundwatertableorpressure), canbesimulatedandusedtodeterminetheoptimaltypeandlocationofawithdrawalinstallation (a group of wells and the location of single wells in it, horizontal well, filter gallery), and respectivewithdrawalrate(s). Beyonditsuseforgroundwatermanagementtasks, groundwater flowsimulationcanalsobeusedforotherapplications,includingthesimulationofwellhydraulics and the evaluation of pumping and infiltration tests to determine aquifer parameters, and for numerous tasks in civil engineering, such as designing proper drainage in excavation pits or determinewaterinfluxintunnelconstructions.Inhydroelectricprojects,theaccuratesimulation ofwaterpercolationthrough,below,andaroundstoragedams,isimportantforthedesignofproper measurestoreducetherespectiveflowrates, forexample, bytheuseoflinersorinjections. In addition, the filling of storage lakes and the impact on the natural groundwater flow field can alsobesimulated.Inareaswithlimitednaturalaquifers,numericalmodelingisanimportanttool tooptimizetheaugmentationofwatersupplies,e.g.byartificialrecharge. Groundwater flow simulation can be coupled with solute transport simulation and may be applied to model natural or anthropogenic-induced chemical species transport, including pro- cesses of solute sorption, production and decay. This procedure may be applied to analyze groundwater contaminant transport problems, and aquifer vulnerability (contamination hazard andrisk),todefineaquiferremediationmeasuresincasesofcontamination,andtodelimitpro- tection zones around groundwater capture areas. Numerical transport modeling can be further applied to the analysis of problems such as those related to subsurface-waste injection, land- fill leaching, and the evaluation of tracer tests. It is suitable to simulate complex redox- and pH-dependent chemical and biochemical reactions which occur in the groundwater during its movement in an aquifer. One example is the occurrence of geogenic contaminants in ground- water such as arsenic, which is found at toxic levels in many regions of the world, making it amajorenvironmentalhealthriskforthe21stcentury(seee.g., Bundschuhetal. 2005, 2009, Bhattacharyaetal.2007a,band2008).Inordertosupplysafedrinkingwatertothetensofmillions of people affected, an improved understanding of the hydrogeochemical processes responsible for high levels of arsenic in groundwater is required. Hence, numerical modeling is a reliable toolwithwhichtoexaminenaturalandanthropogeniccontaminationprocessesofaquifers, by forecastingcontaminationpropagation,anddefiningoptimalremediationmeasures. Anotherimportantapplicationisthemodelingofsaltwaterintrusionsintofreshwateraquifers. Worldwide,coastalaquifersareincreasinglyaffectedbysalinizationduetoseawaterintrusions causedbyexcessivegroundwaterexploitationincoastalareas.Here,numericalmodelingcom- binedwithextensivegroundwatermonitoring,canoptimizefreshwaterexploitationandavoidor reducesalinizationofaquifers. In special cases, heat transport has to be considered, e.g. in relation to applications such as seasonalheatstorageunderground, thestorageofradioactivewasteandothersituationswhere temperaturechangesinaquifersareofimportance.Heattransportmayalsobeofinterestifwe wishtodescribethemixingofwatersofdifferenttemperatures,asoccursduringgroundwater- surfacewaterinteractions.Inthiscase,heatmaybeusedasatracertoidentifyandquantifymixing processes,suchasinfiltrationofriverwaterintoanaquifer,orgroundwaterrechargeprocessesdue “ch01” — 2010/6/2 — 19:50 — page 8 — #8 Introduction 9 toprecipitation,whichcanfurtherbeusedforassessingthegroundwatercontaminationpotential from contaminated surfaces or rivers. In addition, heat transport is of interest, e.g. if we want tomodelprocessesresultingintemperaturevariationsinspringwaterorshallowgroundwater, whicharerelatedtotemperaturechangesattheEarth’ssurface(Bundschuh1992,1993a,b,1995). 1.4.2 Geothermalresources Thegeothermaloptionforelectricitygenerationhasrecentlybeenrecognizedastheoptimal— economicallyandenvironmentallysound—choicetomeetmuchofthefutureelectricitydemand andguaranteeenergysecurityandenergyindependenceofbothdevelopinganddevelopedcoun- tries(ChandrasekharamandBundschuh2002,2008,AaheimandBundschuh2002,Bundschuh etal.2002,2007,BundschuhandCoviello2002;furtherinformationcanbefoundonthehome- pages of the International Geothermal Association (IGA2009a, b) the Geothermal Resources Council(GRC2009)andtheGeothermalEducationOffice(GEO2009)). Recentinnovationsintheformofbinaryfluids,heatexchangers,anddrillingtechnologieshave madethecommercialexploitationoflow-enthalpyconvectivegeothermalresources(<150◦C)and conductiveenhancedgeothermalsystems(low-andhigh-enthalpy)possible(Chandrasekharam andBundschuh2008). Convection-dominated high-enthalpy geothermal systems (vapor- or liquid-dominated; >150◦C)arerelatedtovolcanicand/ortectonicactiveareas,andthereforeareonlyfoundalong activeplateboundariesinboththecontinentsandtheoceans.Attheselocations,uprisingmagma or deep-seated intrusives are the main source of heat for low- and high-enthalpy convective geothermal systems, whose main source of thermal fluid is meteoric water. Convective low- enthalpyresourceshaveconsiderablygreatergeothermalpotentialthanhigh-enthalpysystems, andmuchlargerregionaldistributionsincetheyarenotlimitedtoactivetectonicplateboundaries. Despite these benefits, low-enthalpy systems are practically unutilized for electricity genera- tioninbothdevelopedanddevelopingcountries(ChandrasekharamandBundschuh2002,2008, Bundschuh and Chandrasekharam 2002, Bundschuh et al. 2002, 2007), even though geother- ◦ malwaterwithtemperaturesaslowas80 Ccanbeusedforeconomicalcommercialelectricity generationwithcurrentlyavailabletechnologies. Enhancedgeothermalsystems(EGS),whicharenotlimitedtovolcanicand/ortectonicactive areassuchasconvectivehigh-enthalpygeothermalsystems,haveevengreaterpotential.Inthese systems,heatisprovidedbythenaturalradioactivityofelementslikeU,Th,andK,andthecon- ductionofheatfromthemantletoshallowerlevelsalongdeepcontinentalcrust(Chandrasekharam andBundschuh2008).EGS,whichareavailableinpracticallyeverycountry,havereceivedgreater attentioninrecentyears.AccordingtotheMITreport(MIT2006),theUSAalonehasanEGS potentialofabout13,000,000ExaJoules(EJ=1018Joules)(depth3–10km),ofwhich200,000 EJcanbeextractedforutilization, whichcorrespondstoabout2000timestheannualprimary energy consumption of the country in 2005. By 2050 the USA could economically generate about100,000MW withmodestR&Dinvestment(MIT2006).Recentincreasesinthecostand e uncertainty surrounding conventional energy supplies make these EGS resources increasingly attractive.ThesedevelopmentsintheUSAarefollowingtheinternationalprogressinthedevel- opmentofEGSandrelatedtechnologies,whichhasobtainedconsiderableinterestinEuropeand Australiaoverthelastfewyears.Itisespeciallyimportantthatdevelopingcountries,whichcanall accesslow-enthalpyconvectiveandconductiveEGSsourcesforelectricitygeneration,areaware oftheseresources.Formanyofthesecountries,theexploitationoflow-enthalpyresourcesisnot newsincetheyhavebeenusedoverthepastcenturiesforbathing,andfordirectapplicationsthe lastfewdecades(ChandrasekharamandBundschuh2008).Lundetal.(2010)reporteddirectuse productiondatafromthesesystemsin78countriesintheyear2010(72intheyear2005). The accelerated growth of interest in geothermal systems requires further development of sophisticatedsoftwareandthecreationofnumericalmodelstofacilitategeothermalexploration andexploitation,andtosustainlong-termproductivity.Tounderstandbothconvectiveandcon- ductivegeothermalsystems, thegeologicalandtectonicfeaturesthatcontrolthemneedstobe “ch01” — 2010/6/2 — 19:50 — page 9 — #9 10 Introductiontothenumericalmodeling thoroughlyunderstood. Simplenumericalmodelsofgeothermalreservoirs(includingscenario modeling)canassistinunderstandingthesesystemsduringpre-drillingstages,andasmoredata becomeavailable,moresophisticatedmodels,e.g.thosethatincludethermoporoelasticprocesses, canbedeveloped.Thedevelopmentofthesetoolscanbeongoingduringdrillingandexploita- tion,tohelpensurethatconvection-dominatedgeothermalreservoirsareutilizedoptimallyina sustainableway.InthecaseofEGS,theheatexchangebetweenrockandtheartificiallycirculated fluidsalongthereservoirfracturescanbemodeledtoassistmanagersduringtheexplorationphase (e.g.indecisionsaboutartificialfracturingusedtoincreasethevolumeofthefluidspace),and toensureoptimalexploitationofthesystem.Thisinvolvesmodelinghydraulicfracturingusing highfluidpressureonareservoirtoenhancetheexistingpermeabilityandestablishconnectivity betweenadjacentfracturesbyopeningsealedjointsorbycreatingnewfracturestoallowgeofluids tomovemorefreelythroughtherockformation.Thisisaninterestingapplicationthatisusedto assistinthedesignandtooptimizetheoutcomeofthefracturingprocess. 1.5 THENEEDTOACCELERATETHEUSEOFNUMERICALMODELING OFISOTHERMALAQUIFERSANDGEOTHERMALSYSTEMS Compared to the aforementioned advances in computer technologies, numerical methods, and the identification of application possibilities, the use of numerical modeling in hydrogeology, particularlyitsapplicationtogeothermalsystems,isstillrare.Themainreasonforthisisthegap betweenthepeopleinvolvedinthisissueandtheirrespectiveknowledge.Theprincipalgroups ononesideincludesoftwaredevelopers,engineers,andappliedmathematicians,whomayhave insufficient knowledge about the geological, hydrogeological or geothermal background and hence of the application possibilities of numerical models and the respective software needs, so that the design of the software is not optimal. An insufficient understanding of subsurface processesoccurringingroundwaterandgeothermalsystemsmakesthedevelopersunawareof thenumericalneedstooptimizemodelcalibrationsubprogramsandtoolsthathandletheproblem ofirreguarlyavailabledataintimeandspace.Ontheotherside,therearethehydrogeologistsand othergroundwaterprofessionalsorgeothermists, whomayhavelittleknowledgeofnumerical methods,applicationpossibilities,orthecorrectapplicationofmodels.Inparticularthesegroups lack expertise in (1) the elaboration of an accurate conceptual model, (2) the selection of the appropriatemodelcodesuitablefortheelaboratedconceptualmodel(orinafewcasestheproper elaborationofanumericalprogramcode),(3)thediscretizationofthemodelareainspaceand timetoestablishthenumericalmodel,(4)thecorrectcalibrationandvalidationofthemodelby selectingtheappropriatecalibrationandvalidationparameters,and(5)thecorrectevaluationof thesimulationresultsandreliabilityconsideringthemodeluncertainties,thatarerelatedtothe uncertaintyofthedatausedtotesttheselectedconceptualmodel. This book aims to bridge these knowledge gaps and to provide integrated information on numericalmodelinginhydrogeologyandgeothermicsforallthoseinvolved. Wehopetoshow thatnumericalmodelingisareliabletool,whichshouldbeimplementedfortheimprovedintegral management of groundwater and geothermal resources. However, users must always approach numericalmodelsandtheirsimulationresultswithacriticaleye.Itshouldberememberedthat numericalmodelsaretoolsandthatthequalityofthesimulationresultsdependsontheprepa- rationoftheconceptualmodel,knowledgeofthegeologicalsituation,thehydrogeologicaland hydrogeochemicalparametersandthedata,particularlytheinitialandboundaryvalues. Thebasisofthisbookistheideathatspecificmathematicalmodelscanbegeneratedandsolved: models that are useful in underground hydrology and in geothermal systems with transport of mass,heatandsolutes.Thefundamentallawsandconceptsoffluid,energyandsolutetransport inporoelasticrocks,aswellastheirmathematicalrepresentation,areintroducedanddiscussedin detail.Therebythemassandheattransportprocessesandmodelshavebeenexpressedingeneral form, valid for all types of aquifers: isothermal aquifers, where heat transport is normally not ofinterest,andconvectivegeothermalsystems,whereheattransportandthepresenceofliquid “ch01” — 2010/6/2 — 19:50 — page 10 — #10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.