ebook img

Introduction to the Network Approximation Method for Materials Modeling PDF

258 Pages·2013·1.29 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to the Network Approximation Method for Materials Modeling

INTRODUCTION TO THE NETWORK APPROXIMATION METHOD FOR MATERIALS MODELING Inrecentyearsthetraditionalsubjectofcontinuummechanicshasgrownrapidly andmanynewtechniqueshaveemerged.Thistextprovidesarigorous,yet accessibleintroductiontothebasicconceptsofthenetworkapproximation methodandprovidesaunifiedapproachforsolvingawidevarietyofapplied problems. Asaunifyingtheme,theauthorsdiscussindetailthetransportproblemina systemofbodies.Theysolvetheproblemofcloselyplacedbodiesusingthenew methodofthenetworkapproximationforpartialdifferentialequationswith discontinuouscoefficients. Intendedforgraduatestudentsinappliedmathematicsandrelatedfieldssuch asphysics,chemistryandengineering,thebookisalsoausefuloverviewofthe topicforresearchersintheseareas. EncyclopediaofMathematicsandItsApplications Thisseriesisdevotedtosignificanttopicsorthemesthathavewideapplicationin mathematicsormathematicalscienceandforwhichadetaileddevelopmentof theabstracttheoryislessimportantthanathoroughandconcreteexplorationof theimplicationsandapplications. BooksintheEncyclopediaofMathematicsandItsApplicationscovertheir subjectscomprehensively.Lessimportantresultsmaybesummarizedas exercisesattheendsofchapters.Fortechnicalities,readerscanbereferredtothe bibliography,whichisexpectedtobecomprehensive.Asaresult,volumesare encyclopedicreferencesormanageableguidestomajorsubjects. Encyclopedia of Mathematics and its Applications AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridge UniversityPress.Foracompleteserieslistingvisit www.cambridge.org/mathematics. 95 Y.JabriTheMountainPassTheorem 96 G.GasperandM.RahmanBasicHypergeometricSeries,2ndedn 97 M.C.PedicchioandW.Tholen(eds.)CategoricalFoundations 98 M.E.H.IsmailClassicalandQuantumOrthogonalPolynomialsinOneVariable 99 T.MoraSolvingPolynomialEquationSystemsII 100 E.OlivieriandM.Eula´liaVaresLargeDeviationsandMetastability 101 A.Kushner,V.LychaginandV.RubtsovContactGeometryandNonlinearDifferentialEquations 102 L.W.BeinekeandR.J.Wilson(eds.)withP.J.CameronTopicsinAlgebraicGraphTheory 103 O.J.StaffansWell-PosedLinearSystems 104 J.M.Lewis,S.LakshmivarahanandS.K.DhallDynamicDataAssimilation 105 M.LothaireAppliedCombinatoricsonWords 106 A.MarkoeAnalyticTomography 107 P.A.MartinMultipleScattering 108 R.A.BrualdiCombinatorialMatrixClasses 109 J.M.BorweinandJ.D.VanderwerffConvexFunctions 110 M.-J.LaiandL.L.SchumakerSplineFunctionsonTriangulations 111 R.T.CurtisSymmetricGenerationofGroups 112 H.Salzmannetal.TheClassicalFields 113 S.PeszatandJ.ZabczykStochasticPartialDifferentialEquationswithLe´vyNoise 114 J.BeckCombinatorialGames 115 L.BarreiraandY.PesinNonuniformHyperbolicity 116 D.Z.ArovandH.DymJ-ContractiveMatrixValuedFunctionsandRelatedTopics 117 R.Glowinski,J.-L.LionsandJ.HeExactandApproximateControllabilityforDistributedParameter Systems 118 A.A.BorovkovandK.A.BorovkovAsymptoticAnalysisofRandomWalks 119 M.DezaandM.DutourSikiric´GeometryofChemicalGraphs 120 T.NishiuraAbsoluteMeasurableSpaces 121 M.PrestPurity,SpectraandLocalisation 122 S.KhrushchevOrthogonalPolynomialsandContinuedFractions 123 H.NagamochiandT.IbarakiAlgorithmicAspectsofGraphConnectivity 124 F.W.KingHilbertTransformsI 125 F.W.KingHilbertTransformsII 126 O.CalinandD.-C.ChangSub-RiemannianGeometry 127 M.Grabischetal.AggregationFunctions 128 L.W.BeinekeandR.J.Wilson(eds.)withJ.L.GrossandT.W.TuckerTopicsinTopologicalGraph Theory 129 J.Berstel,D.PerrinandC.ReutenauerCodesandAutomata 130 T.G.FaticoniModulesoverEndomorphismRings 131 H.MorimotoStochasticControlandMathematicalModeling 132 G.SchmidtRelationalMathematics 133 P.KornerupandD.W.MatulaFinitePrecisionNumberSystemsandArithmetic 134 Y.CramaandP.L.Hammer(eds.)BooleanModelsandMethodsinMathematics,ComputerScience, andEngineering 135 V.Berthe´andM.Rigo(eds.)Combinatorics,AutomataandNumberTheory 136 A.Krista´ly,V.D.Ra˘dulescuandC.VargaVariationalPrinciplesinMathematicalPhysics,Geometry, andEconomics 137 J.BerstelandC.ReutenauerNoncommutativeRationalSerieswithApplications 138 B.CourcelleGraphStructureandMonadicSecond-OrderLogic 139 M.FiedlerMatricesandGraphsinGeometry 140 N.VakilRealAnalysisthroughModernInfinitesimals 141 R.B.ParisHadamardExpansionsandHyperasymptoticEvaluation 142 Y.CramaandP.L.HammerBooleanFunctions 143 A.Arapostathis,V.S.BorkarandM.K.GhoshErgodicControlofDiffusionProcesses 144 N.Caspard,B.LeclercandB.MonjardetFiniteOrderedSets 145 D.Z.ArovandH.DymBitangentialDirectandInverseProblemsforSystemsofIntegraland DifferentialEquations 146 G.DassiosEllipsoidalHarmonics 147 L.W.BeinekeandR.J.Wilson(eds.)withO.R.OellermannTopicsinStructuralGraphTheory Encyclopedia of Mathematics and its Applications Introduction to the Network Approximation Method for Materials Modeling LEONID BERLYAND PennsylvaniaStateUniversity ALEXANDER G. KOLPAKOV Universita`degliStudidiCassinoedelLazioMeridionale ALEXEI NOVIKOV PennsylvaniaStateUniversity cambridge university press Cambridge,NewYork,Melbourne,Madrid,CapeTown, Singapore,Sa˜oPaulo,Delhi,MexicoCity CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9781107028234 (cid:2)C LeonidBerlyand,AlexanderG.KolpakovandAlexeiNovikov2013 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2013 PrintedandboundintheUnitedKingdombytheMPGBooksGroup AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloguinginPublicationdata Berlyand,Leonid,1957– Introductiontothenetworkapproximationmethodformaterialsmodeling/LeonidBerlyand, PennsylvaniaStateUniversity,AlexanderG.Kolpakov,Universita`degliStudidiCassinoedelLazio Meridionale,A.Novikov,PennsylvaniaStateUniversity. pages cm.–(Encyclopediaofmathematicsanditsapplications) Includesbibliographicalreferencesandindex. ISBN978-1-107-02823-4(hardback) 1.Compositematerials–Mathematicalmodels. 2.Graphtheory. 3.Differentialequations, Partial. 4.Dualitytheory(Mathematics) I.Kolpakov,A.G. II.Novikov,A.(Alexei) III.Title. TA418.9.C6B465 2013 620.1(cid:3)18015115–dc23 2012029156 ISBN978-1-107-02823-4Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. “Tomymotherandgreatsupporter,MayyaBerlyand”. L.Berlyand “WithfondmemoriesofmywonderfultimeatPennState”. A.Kolpakov “Tomymother”. A.Novikov Contents Preface pagex 1 Reviewofmathematicalnotionsusedintheanalysisof transportproblemsindensely-packedcompositematerials 1 1.1 Graphs 1 1.2 Functionalspacesandweaksolutionsofpartialdifferential equations 3 1.3 Dualityoffunctionalspacesandfunctionals 9 1.4 Differentiationinfunctionalspaces 12 1.5 Introductiontoellipticfunctiontheory 13 1.6 Kirszbraun’stheorem 18 2 Backgroundandmotivationfortheintroductionof networkmodels 20 2.1 Examplesofreal-worldproblemsleadingtodiscrete networkmodels 20 2.2 Examplesofnetworkmodels 22 2.3 Rigorousmathematicalapproaches 27 2.4 Whendoesnetworkmodelingwork? 28 2.5 Historyofthemathematicalinvestigationofoverall propertiesofhigh-contrastmaterialsandarraysofbodies 35 2.6 Berryman–Borcea–PapanicolaouanalysisoftheKozlov model 42 2.7 NumericalanalysisoftheMaxwell–Kellermodel 44 2.8 Percolationindisorderedsystems 49 2.9 Summary 50 viii Contents 3 Networkapproximationforboundary-valueproblemswith discontinuouscoefficientsandafinitenumberofinclusions 51 3.1 Variationalprinciplesandduality.Two-sidedbounds 52 3.2 Compositematerialwithhomogeneousmatrix 57 3.3 Trialfunctionsandtheaccuracyoftwo-sidedbounds. Constructionoftrialfunctionsforhigh-contrast densely-packedcompositematerials 63 3.4 Constructionofaheuristicnetworkmodel.Two-dimensional transportproblemforahigh-contrastcompositematerial filledwithdenselypackedparticles 65 3.5 Asymptoticallymatchingbounds 69 3.6 Proofofthenetworkapproximationtheorem 71 3.7 Close-packingsystemsofbodies 88 3.8 Finishoftheproofofthenetworkapproximationtheorem 90 3.9 Thepseudo-diskmethodandRobinboundaryconditions 98 4 Numericsforpercolationandpolydispersityvianetworkmodels 100 4.1 Computationoffluxbetweentwocloselyspaceddisksof differentradiiusingtheKellermethod 100 4.2 Conceptofneighborsusingcharacteristicdistances 102 4.3 Numericalimplementationofthediscretenetwork approximationandfluxesinthenetwork 104 4.4 Propertyoftheself-similarityproblem(3.2.4)–(3.2.7) 105 4.5 Numericalsimulationsformonodispersedcomposite materials.Thepercolationphenomenon 106 4.6 Polydisperseddensely-packedcompositematerials 110 5 Thenetworkapproximationtheoremforaninfinite numberofbodies 116 5.1 Formulationofthemathematicalmodel 116 5.2 Triangle–neckpartitionanddiscretenetwork 119 5.3 Perturbednetworkmodels 129 5.4 δ-Nconnectednessandδ-subgraphs 129 5.5 Propertiesofthediscretenetwork 131 5.6 Variationalerrorestimates 135 5.7 Therefinedlower-sidedbound 136 5.8 Therefinedupper-sidedbound 138 5.9 Constructionoftrialfunctionfortheupper-sidedbound 138 5.10 Thenetworkapproximationtheoremwithanerrorestimate independentofthetotalnumberofparticles 145 5.11 Estimationoftheconstantinthenetworkapproximation theorem 147 5.12 Aposteriorinumericalerror 151 Contents ix 6 Networkmethodfornonlinearcomposites 155 6.1 Formulationofthemathematicalmodel 156 6.2 Atwo-stepconstructionofthenetwork 157 6.3 Proofsforthedomainpartitioningstep 163 6.4 Proofsfortheasymptoticstep 174 7 Networkapproximationforpotentialsofbodies 180 7.1 Formulationoftheproblemofapproximationofpotentials ofbodies 180 7.2 Networkapproximationtheoremforpotentials 182 8 Applicationofthemethodofcomplexvariables 191 8.1 R-linearproblemandfunctionalequations 191 8.2 Doubly-periodicproblems 204 8.3 Optimaldesignproblemformonodispersedcomposites 213 8.4 Randompolydispersedcomposite 217 References 228 Index 242

Description:
In recent years the traditional subject of continuum mechanics has grown rapidly and many new techniques have emerged. This text provides a rigorous, yet accessible introduction to the basic concepts of the network approximation method and provides a unified approach for solving a wide variety of ap
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.