INTRODUCTION TO THE NETWORK APPROXIMATION METHOD FOR MATERIALS MODELING Inrecentyearsthetraditionalsubjectofcontinuummechanicshasgrownrapidly andmanynewtechniqueshaveemerged.Thistextprovidesarigorous,yet accessibleintroductiontothebasicconceptsofthenetworkapproximation methodandprovidesaunifiedapproachforsolvingawidevarietyofapplied problems. Asaunifyingtheme,theauthorsdiscussindetailthetransportproblemina systemofbodies.Theysolvetheproblemofcloselyplacedbodiesusingthenew methodofthenetworkapproximationforpartialdifferentialequationswith discontinuouscoefficients. Intendedforgraduatestudentsinappliedmathematicsandrelatedfieldssuch asphysics,chemistryandengineering,thebookisalsoausefuloverviewofthe topicforresearchersintheseareas. EncyclopediaofMathematicsandItsApplications Thisseriesisdevotedtosignificanttopicsorthemesthathavewideapplicationin mathematicsormathematicalscienceandforwhichadetaileddevelopmentof theabstracttheoryislessimportantthanathoroughandconcreteexplorationof theimplicationsandapplications. BooksintheEncyclopediaofMathematicsandItsApplicationscovertheir subjectscomprehensively.Lessimportantresultsmaybesummarizedas exercisesattheendsofchapters.Fortechnicalities,readerscanbereferredtothe bibliography,whichisexpectedtobecomprehensive.Asaresult,volumesare encyclopedicreferencesormanageableguidestomajorsubjects. Encyclopedia of Mathematics and its Applications AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridge UniversityPress.Foracompleteserieslistingvisit www.cambridge.org/mathematics. 95 Y.JabriTheMountainPassTheorem 96 G.GasperandM.RahmanBasicHypergeometricSeries,2ndedn 97 M.C.PedicchioandW.Tholen(eds.)CategoricalFoundations 98 M.E.H.IsmailClassicalandQuantumOrthogonalPolynomialsinOneVariable 99 T.MoraSolvingPolynomialEquationSystemsII 100 E.OlivieriandM.Eula´liaVaresLargeDeviationsandMetastability 101 A.Kushner,V.LychaginandV.RubtsovContactGeometryandNonlinearDifferentialEquations 102 L.W.BeinekeandR.J.Wilson(eds.)withP.J.CameronTopicsinAlgebraicGraphTheory 103 O.J.StaffansWell-PosedLinearSystems 104 J.M.Lewis,S.LakshmivarahanandS.K.DhallDynamicDataAssimilation 105 M.LothaireAppliedCombinatoricsonWords 106 A.MarkoeAnalyticTomography 107 P.A.MartinMultipleScattering 108 R.A.BrualdiCombinatorialMatrixClasses 109 J.M.BorweinandJ.D.VanderwerffConvexFunctions 110 M.-J.LaiandL.L.SchumakerSplineFunctionsonTriangulations 111 R.T.CurtisSymmetricGenerationofGroups 112 H.Salzmannetal.TheClassicalFields 113 S.PeszatandJ.ZabczykStochasticPartialDifferentialEquationswithLe´vyNoise 114 J.BeckCombinatorialGames 115 L.BarreiraandY.PesinNonuniformHyperbolicity 116 D.Z.ArovandH.DymJ-ContractiveMatrixValuedFunctionsandRelatedTopics 117 R.Glowinski,J.-L.LionsandJ.HeExactandApproximateControllabilityforDistributedParameter Systems 118 A.A.BorovkovandK.A.BorovkovAsymptoticAnalysisofRandomWalks 119 M.DezaandM.DutourSikiric´GeometryofChemicalGraphs 120 T.NishiuraAbsoluteMeasurableSpaces 121 M.PrestPurity,SpectraandLocalisation 122 S.KhrushchevOrthogonalPolynomialsandContinuedFractions 123 H.NagamochiandT.IbarakiAlgorithmicAspectsofGraphConnectivity 124 F.W.KingHilbertTransformsI 125 F.W.KingHilbertTransformsII 126 O.CalinandD.-C.ChangSub-RiemannianGeometry 127 M.Grabischetal.AggregationFunctions 128 L.W.BeinekeandR.J.Wilson(eds.)withJ.L.GrossandT.W.TuckerTopicsinTopologicalGraph Theory 129 J.Berstel,D.PerrinandC.ReutenauerCodesandAutomata 130 T.G.FaticoniModulesoverEndomorphismRings 131 H.MorimotoStochasticControlandMathematicalModeling 132 G.SchmidtRelationalMathematics 133 P.KornerupandD.W.MatulaFinitePrecisionNumberSystemsandArithmetic 134 Y.CramaandP.L.Hammer(eds.)BooleanModelsandMethodsinMathematics,ComputerScience, andEngineering 135 V.Berthe´andM.Rigo(eds.)Combinatorics,AutomataandNumberTheory 136 A.Krista´ly,V.D.Ra˘dulescuandC.VargaVariationalPrinciplesinMathematicalPhysics,Geometry, andEconomics 137 J.BerstelandC.ReutenauerNoncommutativeRationalSerieswithApplications 138 B.CourcelleGraphStructureandMonadicSecond-OrderLogic 139 M.FiedlerMatricesandGraphsinGeometry 140 N.VakilRealAnalysisthroughModernInfinitesimals 141 R.B.ParisHadamardExpansionsandHyperasymptoticEvaluation 142 Y.CramaandP.L.HammerBooleanFunctions 143 A.Arapostathis,V.S.BorkarandM.K.GhoshErgodicControlofDiffusionProcesses 144 N.Caspard,B.LeclercandB.MonjardetFiniteOrderedSets 145 D.Z.ArovandH.DymBitangentialDirectandInverseProblemsforSystemsofIntegraland DifferentialEquations 146 G.DassiosEllipsoidalHarmonics 147 L.W.BeinekeandR.J.Wilson(eds.)withO.R.OellermannTopicsinStructuralGraphTheory Encyclopedia of Mathematics and its Applications Introduction to the Network Approximation Method for Materials Modeling LEONID BERLYAND PennsylvaniaStateUniversity ALEXANDER G. KOLPAKOV Universita`degliStudidiCassinoedelLazioMeridionale ALEXEI NOVIKOV PennsylvaniaStateUniversity cambridge university press Cambridge,NewYork,Melbourne,Madrid,CapeTown, Singapore,Sa˜oPaulo,Delhi,MexicoCity CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9781107028234 (cid:2)C LeonidBerlyand,AlexanderG.KolpakovandAlexeiNovikov2013 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2013 PrintedandboundintheUnitedKingdombytheMPGBooksGroup AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloguinginPublicationdata Berlyand,Leonid,1957– Introductiontothenetworkapproximationmethodformaterialsmodeling/LeonidBerlyand, PennsylvaniaStateUniversity,AlexanderG.Kolpakov,Universita`degliStudidiCassinoedelLazio Meridionale,A.Novikov,PennsylvaniaStateUniversity. pages cm.–(Encyclopediaofmathematicsanditsapplications) Includesbibliographicalreferencesandindex. ISBN978-1-107-02823-4(hardback) 1.Compositematerials–Mathematicalmodels. 2.Graphtheory. 3.Differentialequations, Partial. 4.Dualitytheory(Mathematics) I.Kolpakov,A.G. II.Novikov,A.(Alexei) III.Title. TA418.9.C6B465 2013 620.1(cid:3)18015115–dc23 2012029156 ISBN978-1-107-02823-4Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. “Tomymotherandgreatsupporter,MayyaBerlyand”. L.Berlyand “WithfondmemoriesofmywonderfultimeatPennState”. A.Kolpakov “Tomymother”. A.Novikov Contents Preface pagex 1 Reviewofmathematicalnotionsusedintheanalysisof transportproblemsindensely-packedcompositematerials 1 1.1 Graphs 1 1.2 Functionalspacesandweaksolutionsofpartialdifferential equations 3 1.3 Dualityoffunctionalspacesandfunctionals 9 1.4 Differentiationinfunctionalspaces 12 1.5 Introductiontoellipticfunctiontheory 13 1.6 Kirszbraun’stheorem 18 2 Backgroundandmotivationfortheintroductionof networkmodels 20 2.1 Examplesofreal-worldproblemsleadingtodiscrete networkmodels 20 2.2 Examplesofnetworkmodels 22 2.3 Rigorousmathematicalapproaches 27 2.4 Whendoesnetworkmodelingwork? 28 2.5 Historyofthemathematicalinvestigationofoverall propertiesofhigh-contrastmaterialsandarraysofbodies 35 2.6 Berryman–Borcea–PapanicolaouanalysisoftheKozlov model 42 2.7 NumericalanalysisoftheMaxwell–Kellermodel 44 2.8 Percolationindisorderedsystems 49 2.9 Summary 50 viii Contents 3 Networkapproximationforboundary-valueproblemswith discontinuouscoefficientsandafinitenumberofinclusions 51 3.1 Variationalprinciplesandduality.Two-sidedbounds 52 3.2 Compositematerialwithhomogeneousmatrix 57 3.3 Trialfunctionsandtheaccuracyoftwo-sidedbounds. Constructionoftrialfunctionsforhigh-contrast densely-packedcompositematerials 63 3.4 Constructionofaheuristicnetworkmodel.Two-dimensional transportproblemforahigh-contrastcompositematerial filledwithdenselypackedparticles 65 3.5 Asymptoticallymatchingbounds 69 3.6 Proofofthenetworkapproximationtheorem 71 3.7 Close-packingsystemsofbodies 88 3.8 Finishoftheproofofthenetworkapproximationtheorem 90 3.9 Thepseudo-diskmethodandRobinboundaryconditions 98 4 Numericsforpercolationandpolydispersityvianetworkmodels 100 4.1 Computationoffluxbetweentwocloselyspaceddisksof differentradiiusingtheKellermethod 100 4.2 Conceptofneighborsusingcharacteristicdistances 102 4.3 Numericalimplementationofthediscretenetwork approximationandfluxesinthenetwork 104 4.4 Propertyoftheself-similarityproblem(3.2.4)–(3.2.7) 105 4.5 Numericalsimulationsformonodispersedcomposite materials.Thepercolationphenomenon 106 4.6 Polydisperseddensely-packedcompositematerials 110 5 Thenetworkapproximationtheoremforaninfinite numberofbodies 116 5.1 Formulationofthemathematicalmodel 116 5.2 Triangle–neckpartitionanddiscretenetwork 119 5.3 Perturbednetworkmodels 129 5.4 δ-Nconnectednessandδ-subgraphs 129 5.5 Propertiesofthediscretenetwork 131 5.6 Variationalerrorestimates 135 5.7 Therefinedlower-sidedbound 136 5.8 Therefinedupper-sidedbound 138 5.9 Constructionoftrialfunctionfortheupper-sidedbound 138 5.10 Thenetworkapproximationtheoremwithanerrorestimate independentofthetotalnumberofparticles 145 5.11 Estimationoftheconstantinthenetworkapproximation theorem 147 5.12 Aposteriorinumericalerror 151 Contents ix 6 Networkmethodfornonlinearcomposites 155 6.1 Formulationofthemathematicalmodel 156 6.2 Atwo-stepconstructionofthenetwork 157 6.3 Proofsforthedomainpartitioningstep 163 6.4 Proofsfortheasymptoticstep 174 7 Networkapproximationforpotentialsofbodies 180 7.1 Formulationoftheproblemofapproximationofpotentials ofbodies 180 7.2 Networkapproximationtheoremforpotentials 182 8 Applicationofthemethodofcomplexvariables 191 8.1 R-linearproblemandfunctionalequations 191 8.2 Doubly-periodicproblems 204 8.3 Optimaldesignproblemformonodispersedcomposites 213 8.4 Randompolydispersedcomposite 217 References 228 Index 242
Description: