ebook img

Introduction to the Mathematical and Statistical Foundations of Econometrics PDF

345 Pages·2004·3.106 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to the Mathematical and Statistical Foundations of Econometrics

This page intentionally left blank IntroductiontotheMathematicalandStatisticalFoundations ofEconometrics ThisbookisintendedforuseinarigorousintroductoryPh.D.-levelcourseinecono- metricsorinafieldcourseineconometrictheory.Itcoversthemeasure–theoretical foundationofprobabilitytheory,themultivariatenormaldistributionwithitsap- plication to classical linear regression analysis, various laws of large numbers, and central limit theorems and related results for independent random variables aswellasforstationarytimeseries,withapplicationstoasymptoticinferenceof M-estimatorsandmaximumlikelihoodtheory.Somechaptershavetheirownap- pendixescontainingmoreadvancedtopicsand/ordifficultproofs.Moreover,there arethreeappendixeswithmaterialthatissupposedtobeknown.AppendixIcon- tainsacomprehensivereviewoflinearalgebra,includingalltheproofs.AppendixII reviewsavarietyofmathematicaltopicsandconceptsthatareusedthroughoutthe main text, and Appendix III reviews complex analysis. Therefore, this book is uniquelyself-contained. Herman J. Bierens is Professor of Economics at the Pennsylvania State Univer- sity and part-time Professor of Econometrics at Tilburg University, The Nether- lands. He is Associate Editor of the Journal of Econometrics and Econometric Reviews, and has been an Associate Editor of Econometrica. Professor Bierens has written two monographs, Robust Methods and Asymptotic Theory in Nonlin- ear Econometrics and Topics in Advanced Econometrics (Cambridge University Press 1994), as well as numerous journal articles. His current research interests aremodel(mis)specificationanalysisineconometricsanditsapplicationinempir- icalresearch,timeserieseconometrics,andtheeconometricanalysisofdynamic stochasticgeneralequilibriummodels. ThemesinModernEconometrics Managingeditor PETERC.B.PHILLIPS,YaleUniversity Serieseditors RICHARDJ.SMITH,UniversityofWarwick ERICGHYSELS,UniversityofNorthCarolina,ChapelHill ThemesinModernEconometricsisdesignedtoservicethelargeandgrow- ingneedforexplicitteachingtoolsineconometrics.Itwillprovideanorga- nizedsequenceoftextbooksineconometricsaimedsquarelyatthestudent population and will be the first series in the discipline to have this as its express aim. Written at a level accessible to students with an introduc- tory course in econometrics behind them, each book will address topics or themes that students and researchers encounter daily. Although each book will be designed to stand alone as an authoritative survey in its own right, the distinct emphasis throughout will be on pedagogic excellence. Titlesintheseries StatisticsandEconometricModels:Volumes1and2 CHRISTIANGOURIEROUXandALAINMONFORT TranslatedbyQUANGVUONG TimeSeriesandDynamicModels CHRISTIANGOURIEROUXandALAINMONFORT TranslatedandeditedbyGIAMPIEROGALLO UnitRoots,Cointegration,andStructuralChange G.S.MADDALAandIN-MOOKIM GeneralizedMethodofMomentsEstimation EditedbyLA´SZLO´ MA´TYA´S NonparametricEconometrics ADRIANPAGANandAMANULLAH EconometricsofQualitativeDependentVariables CHRISTIANGOURIEROUX TranslatedbyPAULB.KLASSEN TheEconometricAnalysisofSeasonalTimeSeries ERICGHYSELSandDENISER.OSBORN SemiparametricRegressionfortheAppliedEconometrician ADONISYATCHEW INTRODUCTION TO THE MATHEMATICAL AND STATISTICAL FOUNDATIONS OF ECONOMETRICS HERMAN J. BIERENS PennsylvaniaStateUniversity    Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge  , UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521834315 © Herman J. Bierens 2005 This book is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format - ---- eBook (NetLibrary) - --- eBook (NetLibrary) - ---- hardback - --- hardback - ---- paperback - --- paperback Cambridge University Press has no responsibility for the persistence or accuracy of s for external or third-party internet websites referred to in this book, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Contents Preface page xv 1 ProbabilityandMeasure 1 1.1 TheTexasLotto 1 1.1.1 Introduction 1 1.1.2 BinomialNumbers 2 1.1.3 SampleSpace 3 1.1.4 AlgebrasandSigma-AlgebrasofEvents 3 1.1.5 ProbabilityMeasure 4 1.2 QualityControl 6 1.2.1 SamplingwithoutReplacement 6 1.2.2 QualityControlinPractice 7 1.2.3 SamplingwithReplacement 8 1.2.4 LimitsoftheHypergeometricandBinomial Probabilities 8 1.3 WhyDoWeNeedSigma-AlgebrasofEvents? 10 1.4 PropertiesofAlgebrasandSigma-Algebras 11 1.4.1 GeneralProperties 11 1.4.2 BorelSets 14 1.5 PropertiesofProbabilityMeasures 15 1.6 TheUniformProbabilityMeasure 16 1.6.1 Introduction 16 1.6.2 OuterMeasure 17 1.7 LebesgueMeasureandLebesgueIntegral 19 1.7.1 LebesgueMeasure 19 1.7.2 LebesgueIntegral 19 1.8 RandomVariablesandTheirDistributions 20 1.8.1 RandomVariablesandVectors 20 1.8.2 DistributionFunctions 23 1.9 DensityFunctions 25 vii viii Contents 1.10 ConditionalProbability,Bayes’Rule, andIndependence 27 1.10.1 ConditionalProbability 27 1.10.2 Bayes’Rule 27 1.10.3 Independence 28 1.11 Exercises 30 Appendix1.A – CommonStructureoftheProofsofTheorems 1.6and1.10 32 Appendix1.B – ExtensionofanOuterMeasuretoa ProbabilityMeasure 32 2 BorelMeasurability,Integration,andMathematical Expectations 37 2.1 Introduction 37 2.2 BorelMeasurability 38 2.3 IntegralsofBorel-MeasurableFunctionswithRespect toaProbabilityMeasure 42 2.4 GeneralMeasurabilityandIntegralsofRandom VariableswithRespecttoProbabilityMeasures 46 2.5 MathematicalExpectation 49 2.6 SomeUsefulInequalitiesInvolvingMathematical Expectations 50 2.6.1 Chebishev’sInequality 51 2.6.2 Holder’sInequality 51 2.6.3 Liapounov’sInequality 52 2.6.4 Minkowski’sInequality 52 2.6.5 Jensen’sInequality 52 2.7 ExpectationsofProductsofIndependentRandom Variables 53 2.8 Moment-GeneratingFunctionsandCharacteristic Functions 55 2.8.1 Moment-GeneratingFunctions 55 2.8.2 CharacteristicFunctions 58 2.9 Exercises 59 Appendix2.A – UniquenessofCharacteristicFunctions 61 3 ConditionalExpectations 66 3.1 Introduction 66 3.2 PropertiesofConditionalExpectations 72 3.3 ConditionalProbabilityMeasuresandConditional Independence 79 3.4 ConditioningonIncreasingSigma-Algebras 80

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.