ebook img

Introduction to the Calculus of Variations and Control with Modern Applications PDF

564 Pages·2013·6.21 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to the Calculus of Variations and Control with Modern Applications

(cid:105) (cid:105) “K16538” — 2013/7/25 — 10:41 — (cid:105) (cid:105) Introduction to The Calculus of Variations and Control with Modern Applications (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) “K16538” — 2013/7/25 — 10:41 — (cid:105) (cid:105) CHAPMAN & HALL/CRC APPLIED MATHEMATICS AND NONLINEAR SCIENCE SERIES Series Editor H. T. Banks Published Titles Advanced Differential Quadrature Methods, Zhi Zong and Yingyan Zhang Computing with hp-ADAPTIVE FINITE ELEMENTS, Volume 1, One and Two Dimensional Elliptic and Maxwell Problems, Leszek Demkowicz Computing with hp-ADAPTIVE FINITE ELEMENTS, Volume 2, Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications, Leszek Demkowicz, Jason Kurtz, David Pardo, Maciej Paszy´nski, Waldemar Rachowicz, and Adam Zdunek CRC Standard Curves and Surfaces with Mathematica®: Second Edition, David H. von Seggern Discovering Evolution Equations with Applications: Volume 1-Deterministic Equations, Mark A. McKibben Discovering Evolution Equations with Applications: Volume 2-Stochastic Equations, Mark A. McKibben Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics, Victor A. Galaktionov and Sergey R. Svirshchevskii Fourier Series in Several Variables with Applications to Partial Differential Equations, Victor L. Shapiro Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications, Victor A. Galaktionov Green’s Functions and Linear Differential Equations: Theory, Applications, and Computation, Prem K. Kythe Group Inverses of M-Matrices and Their Applications, Stephen J. Kirkland and Michael Neumann Introduction to Fuzzy Systems, Guanrong Chen and Trung Tat Pham Introduction to non-Kerr Law Optical Solitons, Anjan Biswas and Swapan Konar Introduction to Partial Differential Equations with MATLAB®, Matthew P. Coleman Introduction to Quantum Control and Dynamics, Domenico D’Alessandro Introduction to The Calculus of Variations and Control with Modern Applications, John A. Burns Mathematical Methods in Physics and Engineering with Mathematica, Ferdinand F. Cap Mathematical Theory of Quantum Computation, Goong Chen and Zijian Diao Mathematics of Quantum Computation and Quantum Technology, Goong Chen, Louis Kauffman, and Samuel J. Lomonaco Mixed Boundary Value Problems, Dean G. Duffy Modeling and Control in Vibrational and Structural Dynamics, Peng-Fei Yao Multi-Resolution Methods for Modeling and Control of Dynamical Systems, Puneet Singla and John L. Junkins Nonlinear Optimal Control Theory, Leonard D. Berkovitz and Negash G. Medhin Optimal Estimation of Dynamic Systems, Second Edition, John L. Crassidis and John L. Junkins Quantum Computing Devices: Principles, Designs, and Analysis, Goong Chen, David A. Church, Berthold-Georg Englert, Carsten Henkel, Bernd Rohwedder, Marlan O. Scully, and M. Suhail Zubairy A Shock-Fitting Primer, Manuel D. Salas Stochastic Partial Differential Equations, Pao-Liu Chow (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) “K16538” — 2013/7/25 — 10:41 — (cid:105) (cid:105) CHAPMAN & HALL/CRC APPLIED MATHEMATICS AND NONLINEAR SCIENCE SERIES Introduction to The Calculus of Variations and Control with Modern Applications John A. Burns Virginia Tech Blacksburg, Virginia, USA (cid:105) (cid:105) (cid:105) (cid:105) CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2014 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper Version Date: 20130715 International Standard Book Number-13: 978-1-4665-7139-6 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information stor- age or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copy- right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro- vides licenses and registration for a variety of users. For organizations that have been granted a pho- tocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com (cid:105) (cid:105) “K16538” — 2013/7/25 — 10:41 — (cid:105) (cid:105) Contents Preface xi Acknowledgments xvii I Calculus of Variations 1 1 Historical Notes on the Calculus of Variations 3 1.1 Some Typical Problems . . . . . . . . . . . . . . . . 6 1.1.1 Queen Dido’s Problem . . . . . . . . . . . . 6 1.1.2 The Brachistochrone Problem . . . . . . . . 7 1.1.3 Shape Optimization . . . . . . . . . . . . . . 8 1.2 Some Important Dates and People . . . . . . . . . . 11 2 Introduction and Preliminaries 17 2.1 Motivating Problems . . . . . . . . . . . . . . . . . 17 2.1.1 Problem 1: The Brachistochrone Problem . . 17 2.1.2 Problem 2: The River Crossing Problem . . 18 2.1.3 Problem 3: The Double Pendulum . . . . . 20 2.1.4 Problem 4: The Rocket Sled Problem . . . 21 2.1.5 Problem 5: Optimal Control in the Life Sci- ences . . . . . . . . . . . . . . . . . . . . . . 22 2.1.6 Problem 6: Numerical Solutions of Bound- ary Value Problems . . . . . . . . . . . . . . 24 2.2 Mathematical Background . . . . . . . . . . . . . . 26 2.2.1 A Short Review and Some Notation . . . . . 26 2.2.2 A Review of One Dimensional Optimization 35 2.2.3 Lagrange Multiplier Theorems . . . . . . . . 42 v (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) “K16538” — 2013/7/25 — 10:41 — (cid:105) (cid:105) vi 2.3 Function Spaces . . . . . . . . . . . . . . . . . . . 57 2.3.1 Distances between Functions . . . . . . . . 64 2.3.2 An Introduction to the First Variation . . . 68 2.4 Mathematical Formulation of Problems . . . . . . . 69 2.4.1 The Brachistochrone Problem . . . . . . . . 69 2.4.2 The Minimal Surface of Revolution Problem 72 2.4.3 The River Crossing Problem . . . . . . . . . 73 2.4.4 The Rocket Sled Problem . . . . . . . . . . 74 2.4.5 The Finite Element Method . . . . . . . . . 76 2.5 Problem Set for Chapter 2 . . . . . . . . . . . . . . 86 3 The Simplest Problem in the Calculus of Variations 91 3.1 The Mathematical Formulation of the SPCV . . . . 91 3.2 The Fundamental Lemma of the Calculus of Varia- tions . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.3 The First Necessary Condition for a Global Mini- mizer . . . . . . . . . . . . . . . . . . . . . . . . . 102 3.3.1 Examples . . . . . . . . . . . . . . . . . . . 112 3.4 Implications and Applications of the FLCV . . . . 117 3.4.1 Weak and Generalized Derivatives . . . . . . 118 3.4.2 Weak Solutions to Differential Equations . 124 3.5 Problem Set for Chapter 3 . . . . . . . . . . . . . 125 4 Necessary Conditions for Local Minima 131 4.1 Weak and Strong Local Minimizers . . . . . . . . . 132 4.2 The Euler Necessary Condition - (I) . . . . . . . . . 135 4.3 The Legendre Necessary Condition - (III) . . . . . . 139 4.4 Jacobi Necessary Condition - (IV) . . . . . . . . . . 146 4.4.1 Proof of the Jacobi Necessary Condition . . 152 4.5 Weierstrass Necessary Condition - (II) . . . . . . . 155 4.5.1 Proof of the Weierstrass Necessary Condition159 4.5.2 Weierstrass Necessary Condition for a Weak Local Minimum . . . . . . . . . . . . . . . . 171 4.5.3 A Proof of Legendre’s Necessary Condition . 176 4.6 Applying the Four Necessary Conditions . . . . . . 178 4.7 Problem Set for Chapter 4 . . . . . . . . . . . . . 180 (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) “K16538” — 2013/7/25 — 10:41 — (cid:105) (cid:105) vii 5 Sufficient Conditions for the Simplest Problem 185 5.1 A Field of Extremals . . . . . . . . . . . . . . . . . 186 5.2 The Hilbert Integral . . . . . . . . . . . . . . . . . 190 5.3 Fundamental Sufficient Results . . . . . . . . . . . 192 5.4 Problem Set for Chapter 5 . . . . . . . . . . . . . . 197 6 Summary for the Simplest Problem 203 7 Extensions and Generalizations 213 7.1 Properties of the First Variation . . . . . . . . . . . 213 7.2 The Free Endpoint Problem . . . . . . . . . . . . . 215 7.2.1 The Euler Necessary Condition . . . . . . . 218 7.2.2 Examples of Free Endpoint Problems . . . . 221 7.3 The Simplest Point to Curve Problem . . . . . . . . 224 7.4 Vector Formulations and Higher Order Problems . . 238 7.4.1 Extensions of Some Basic Lemmas . . . . . 242 7.4.2 The Simplest Problem in Vector Form . . . 249 7.4.3 The Simplest Problem in Higher Order Form 252 7.5 Problems with Constraints: Isoperimetric Problem . 255 7.5.1 Proof of the Lagrange Multiplier Theorem . 259 7.6 Problems with Constraints: Finite Constraints . . . 263 7.7 An Introduction to Abstract Optimization Prob- lems . . . . . . . . . . . . . . . . . . . . . . . . . . 265 7.7.1 The General Optimization Problem . . . . 265 7.7.2 General Necessary Conditions . . . . . . . . 267 7.7.3 Abstract Variations . . . . . . . . . . . . . . 271 7.7.4 Application to the SPCV . . . . . . . . . . . 273 7.7.5 Variational Approach to Linear Quadratic Optimal Control . . . . . . . . . . . . . . . 274 7.7.6 An Abstract Sufficient Condition . . . . . . 275 7.8 Problem Set for Chapter 7 . . . . . . . . . . . . . . 278 8 Applications 283 8.1 Solution of the Brachistochrone Problem . . . . . . 283 8.2 Classical Mechanics and Hamilton’s Principle . . . 287 8.2.1 Conservation of Energy . . . . . . . . . . . . 292 8.3 A Finite Element Method for the Heat Equation . . 295 (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) “K16538” — 2013/7/25 — 10:41 — (cid:105) (cid:105) viii 8.4 Problem Set for Chapter 8 . . . . . . . . . . . . . . 303 II Optimal Control 307 9 Optimal Control Problems 309 9.1 An Introduction to Optimal Control Problems . . . 309 9.2 The Rocket Sled Problem . . . . . . . . . . . . . . 313 9.3 Problems in the Calculus of Variations . . . . . . . 315 9.3.1 The Simplest Problem in the Calculus of Variations . . . . . . . . . . . . . . . . . . . 315 9.3.2 Free End-Point Problem . . . . . . . . . . . 318 9.4 Time Optimal Control . . . . . . . . . . . . . . . . 319 9.4.1 Time Optimal Control for the Rocket Sled Problem . . . . . . . . . . . . . . . . . . . . 319 9.4.2 The Bushaw Problem . . . . . . . . . . . . . 333 9.5 Problem Set for Chapter 9 . . . . . . . . . . . . . . 338 10 Simplest Problem in Optimal Control 341 10.1 SPOC: Problem Formulation . . . . . . . . . . . . . 341 10.2 The Fundamental Maximum Principle . . . . . . . 343 10.3 Application of the Maximum Principle to Some Simple Problems . . . . . . . . . . . . . . . . . . . 351 10.3.1 The Bushaw Problem . . . . . . . . . . . . 351 10.3.2 The Bushaw Problem: Special Case γ = 0 and κ = 1 . . . . . . . . . . . . . . . . . . . 358 10.3.3 A Simple Scalar Optimal Control Problem . 362 10.4 Problem Set for Chapter 10 . . . . . . . . . . . . . 367 11 Extensions of the Maximum Principle 373 11.1 A Fixed-Time Optimal Control Problem . . . . . . 373 11.1.1 The Maximum Principle for Fixed t . . . . 375 1 11.2 Application to Problems in the Calculus of Varia- tions . . . . . . . . . . . . . . . . . . . . . . . . . . 377 11.2.1 The Simplest Problem in the Calculus of Variations . . . . . . . . . . . . . . . . . . . 377 11.2.2 Free End-Point Problems . . . . . . . . . . 384 11.2.3 Point-to-Curve Problems . . . . . . . . . . 385 (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) “K16538” — 2013/7/25 — 10:41 — (cid:105) (cid:105) ix 11.3 Application to the Farmer’s Allocation Problem . . 393 11.4 Application to a Forced Oscillator Control Problem 400 11.5 Application to the Linear Quadratic Control Problem . . . . . . . . . . . . . . . . . . . . . . . . 404 11.5.1 Examples of LQ Optimal Control Problems 410 11.5.2 The Time Independent Riccati Differential Equation . . . . . . . . . . . . . . . . . . . 419 11.6 The Maximum Principle for a Problem of Bolza . . 429 11.7 The Maximum Principle for Nonautonomous Systems . . . . . . . . . . . . . . . . . . . . . . . . 436 11.8 Application to the Nonautonomous LQ Control Problem . . . . . . . . . . . . . . . . . . . . . . . . 446 11.9 Problem Set for Chapter 11 . . . . . . . . . . . . . 453 12 Linear Control Systems 459 12.1 Introduction to Linear Control Systems . . . . . . . 459 12.2 Linear Control Systems Arising from Nonlinear Problems . . . . . . . . . . . . . . . . . . . . . . . 473 12.2.1 Linearized Systems . . . . . . . . . . . . . . 474 12.2.2 Sensitivity Systems . . . . . . . . . . . . . 475 12.3 Linear Quadratic Optimal Control . . . . . . . . . . 478 12.4 The Riccati Differential Equation for a Problem of Bolza . . . . . . . . . . . . . . . . . . . . . . . . . . 480 12.5 Estimation and Observers . . . . . . . . . . . . . . 490 12.5.1 The Luenberger Observer . . . . . . . . . . 494 12.5.2 An Optimal Observer: The Kalman Filter . 498 12.6 The Time Invariant Infinite Interval Problem . . . 506 12.7 The Time Invariant Min-Max Controller . . . . . . 509 12.8 Problem Set for Chapter 12 . . . . . . . . . . . . . 511 Bibliography 519 Index 539 (cid:105) (cid:105) (cid:105) (cid:105)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.