ebook img

Introduction to Tensor Analysis and the Calculus of Moving Surfaces PDF

303 Pages·2013·2.447 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to Tensor Analysis and the Calculus of Moving Surfaces

Pavel Grinfeld Introduction to Tensor Analysis and the Calculus of Moving Surfaces Introduction to Tensor Analysis and the Calculus of Moving Surfaces Pavel Grinfeld Introduction to Tensor Analysis and the Calculus of Moving Surfaces 123 PavelGrinfeld DepartmentofMathematics DrexelUniversity Philadelphia,PA,USA ISBN978-1-4614-7866-9 ISBN978-1-4614-7867-6(eBook) DOI10.1007/978-1-4614-7867-6 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2013947474 Mathematics Subject Classifications (2010): 4901, 11C20, 15A69, 35R37, 58A05, 51N20, 51M05, 53A05,53A04 ©SpringerScience+BusinessMediaNewYork2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface The purpose of this book is to empower the reader with a magnificent new perspectiveonawiderangeoffundamentaltopicsinmathematics.Tensorcalculus isalanguagewithauniqueabilitytoexpressmathematicalideaswithutmostutility, transparency, and elegance. It can help students from all technical fields see their respectivefieldsinanewandexcitingway.Ifcalculusandlinearalgebraarecentral tothereader’sscientificendeavors,tensorcalculusisindispensable.Thisparticular textbookismeantforadvancedundergraduateandgraduateaudiences.Itenvisions atimewhentensorcalculus,oncechampionedbyEinstein,isonceagainacommon languageamongscientists. A plethora of older textbooks exist on the subject. This book is distinguished from its peers by the thoroughness with which the underlying essential elements aretreated.Itfocusesagreatdealonthegeometricfundamentals,themechanicsof changeofvariables,theproperuseofthetensornotation,andtheinterplaybetween algebraandgeometry.Theearlychaptershavemanywordsandfewequations.The definitionofatensorcomesonlyinChap.6—whenthereaderisreadyforit. Part III of this book is devoted to the calculus of moving surfaces (CMS). One of the central applications of tensor calculus is differential geometry, and there is probably not one book about tensors in which a major portion is not devoted to manifolds. The CMS extends tensor calculus to moving manifolds. Applications of the CMS are extraordinarily broad. The CMS extends the language of tensors to physical problems with moving interfaces. It is an effective tool for analyzing boundaryvariationsofpartialdifferentialequations.Italsoenablesustobringthe calculusofvariationswithinthetensorframework. Whilethisbookmaintainsareasonablelevelofrigor,ittakesgreatcaretoavoid a formalization of the subject. Topological spaces and groups are not mentioned. Instead,thisbookfocusesonconcreteobjectsandappealstothereader’sgeometric intuitionwithrespecttosuchfundamentalconceptsastheEuclideanspace,surface, length,area,andvolume.Afewotherbooksdoagoodjobinthisregard,including [2,8,31,46]. The book [42] is particularly concise and offers the shortest path to the general relativity theory. Of course, for those interested in relativity, Hermann v vi Preface Weyl’s classic Space, Time, Matter [47] is without a rival. For an excellent book withanemphasisonelasticity,see[40]. Along with eschewing formalism, this book also strives to avoid vagueness associatedwithsuchnotionsastheinfinitesimaldifferentialsdxi.Whileanumber offundamentalconceptsareacceptedwithoutdefinition,allsubsequentelementsof thecalculusarederivedinaconsistentandrigorousway. The description of Euclidean spaces centers on the basis vectors Z . These i importantandgeometricallyintuitiveobjectsareabsentfrommanytextbooks.Yet, their use greatly simplifies the introduction of a number of concepts, including the metric tensor Z D Z (cid:2) Z and Christoffel symbol (cid:2)i D Zi (cid:2) @Z =@Zk. ij i j jk j Furthermore, the use of vector quantities goes a long way towards helping the studentseetheworldinawaythatisindependentofCartesiancoordinates. The notation is of paramount importance in mastering the subject. To borrow a sentence from A.J. McConnell [31]: “The notation of the tensor calculus is so muchanintegralpartofthecalculusthatoncethestudenthasbecomeaccustomed to its peculiarities he will have gone a long way towards solving the difficulties of the theory itself.” The introduction of the tensor technique is woven into the presentationofthematerialinChap.4.Asaresult,theframeworkisdescribedina naturalcontextthatmakestheeffectivenessoftherulesandconventionsapparent. Thisisunlikemostothertextbookswhichintroducethetensornotationinadvance oftheactualcontent. In spirit and vision, this book is most similar to A.J. McConnell’s classic ApplicationsofTensorCalculus[31].Hisconcreteno-frillsapproachisperfectfor the subject and served as an inspiration for this book’s style. Tullio Levi-Civita’s ownTheAbsoluteDifferentialCalculus[28]isanindispensablesourcethatreveals themotivationsofthesubject’sco-founder. Sinceaheavyemphasisinplacedonvector-valuedquantities,itisimportantto havegoodfamiliaritywithgeometricvectorsviewedasobjectsontheirownterms ratherthanelementsinRn.Anumberoftextbooksdiscussthegeometricnatureof vectorsingreatdepth.FirstandforemostisJ.W.Gibbs’classic[14],whichservedas aprototypeforlatertexts.Danielson[8]alsogivesagoodintroductiontogeometric vectorsandoffersanexcellentdiscussiononthesubjectofdifferentiationofvector fields. Thefollowingbooksenjoyagoodreputationinthemoderndifferentialgeometry community: [3,6,23,29,32,41]. Other popular textbooks, including [38,43] are knownfortakingtheformalapproachtothesubject. Virtually all books on the subject focus on applications, with differential geometryfrontandcenter.Othercommonapplicationsincludeanalyticaldynamics, continuummechanics,andrelativitytheory.Somebooksfocusonparticularappli- cations. A case in point is L.V. Bewley’s Tensor Analysis of Electric Circuits And Machines[1].Bewleyenvisionedthatthetensorapproachtoelectricalengineering wouldbecomeastandard.Hereishopinghisdreameventuallycomestrue. Philadelphia,PA PavelGrinfeld Contents 1 WhyTensorCalculus? .................................................... 1 PartI TensorsinEuclideanSpaces 2 RulesoftheGame .......................................................... 11 2.1 Preview.............................................................. 11 2.2 TheEuclideanSpace ............................................... 11 2.3 Length,Area,andVolume.......................................... 13 2.4 ScalarsandVectors ................................................. 14 2.5 TheDotProduct .................................................... 14 2.5.1 InnerProductsandLengthsinLinearAlgebra......... 15 2.6 TheDirectionalDerivative ......................................... 15 2.7 TheGradient ........................................................ 17 2.8 DifferentiationofVectorFields ................................... 18 2.9 Summary ............................................................ 19 3 CoordinateSystemsandtheRoleofTensorCalculus.................. 21 3.1 Preview.............................................................. 21 3.2 WhyCoordinateSystems? ......................................... 21 3.3 WhatIsaCoordinateSystem? ..................................... 23 3.4 PerilsofCoordinates................................................ 24 3.5 TheRoleofTensorCalculus....................................... 27 3.6 ACatalogofCoordinateSystems.................................. 27 3.6.1 CartesianCoordinates ................................... 28 3.6.2 AffineCoordinates ...................................... 30 3.6.3 PolarCoordinates ....................................... 30 3.6.4 CylindricalCoordinates ................................. 31 3.6.5 SphericalCoordinates ................................... 32 3.6.6 RelationshipsAmongCommonCoordinate Systems................................................... 32 3.7 Summary ............................................................ 34 vii viii Contents 4 ChangeofCoordinates..................................................... 35 4.1 Preview.............................................................. 35 4.2 AnExampleofaCoordinateChange.............................. 35 4.3 AJacobianExample................................................ 36 4.4 TheInverseRelationshipBetweentheJacobians ................. 37 4.5 TheChainRuleinTensorNotation................................ 38 4.6 InverseFunctions ................................................... 42 4.7 InverseFunctionsofSeveralVariables ............................ 43 4.8 TheJacobianPropertyinTensorNotation......................... 45 4.9 SeveralNotesontheTensorNotation.............................. 48 4.9.1 TheNamingofIndices .................................. 48 4.9.2 CommutativityofContractions ......................... 49 4.9.3 MoreontheKroneckerSymbol......................... 50 4.10 Orientation-PreservingCoordinateChanges ...................... 50 4.11 Summary ............................................................ 51 5 TheTensorDescriptionofEuclideanSpaces............................ 53 5.1 Preview.............................................................. 53 5.2 ThePositionVectorR .............................................. 53 5.3 ThePositionVectorasaFunctionofCoordinates ................ 54 5.4 TheCovariantBasisZ ............................................. 55 i 5.5 TheCovariantMetricTensorZ .................................. 56 ij 5.6 TheContravariantMetricTensorZij .............................. 57 5.7 TheContravariantBasisZi ......................................... 58 5.8 TheMetricTensorandMeasuringLengths........................ 59 5.9 IntrinsicObjectsandRiemannSpaces............................. 60 5.10 DecompositionwithRespecttoaBasisbyDotProduct.......... 60 5.11 TheFundamentalElementsinVariousCoordinates .............. 62 5.11.1 CartesianCoordinates ................................... 62 5.11.2 AffineCoordinates....................................... 63 5.11.3 PolarandCylindricalCoordinates...................... 65 5.11.4 SphericalCoordinates ................................... 66 5.12 TheChristoffelSymbol(cid:2)k ........................................ 67 ij 5.13 TheOrderofIndices................................................ 71 5.14 TheChristoffelSymbolinVariousCoordinates................... 72 5.14.1 CartesianandAffineCoordinates....................... 72 5.14.2 CylindricalCoordinates ................................. 72 5.14.3 SphericalCoordinates ................................... 72 5.15 Summary ............................................................ 73 6 TheTensorProperty ....................................................... 75 6.1 Preview.............................................................. 75 6.2 Variants.............................................................. 75 6.3 DefinitionsandEssentialIdeas..................................... 76 6.3.1 TensorsofOrderOne.................................... 76 6.3.2 TensorsAretheKeytoInvariance...................... 76 Contents ix 6.3.3 TheTensorPropertyofZ ............................... 77 i 6.3.4 TheReverseTensorRelationship ....................... 78 6.3.5 TensorPropertyofVectorComponents................. 79 6.3.6 TheTensorPropertyofZi .............................. 80 6.4 TensorsofHigherOrder............................................ 80 6.4.1 TheTensorPropertyofZ andZij .................... 81 ij 6.4.2 TheTensorPropertyofıi ............................... 81 j 6.5 Exercises ............................................................ 82 6.6 TheFundamentalPropertiesofTensors ........................... 83 6.6.1 SumofTensors........................................... 83 6.6.2 ProductofTensors....................................... 83 6.6.3 TheContractionTheorem............................... 84 6.6.4 The Important Implications oftheContractionTheorem............................. 85 6.7 Exercises ............................................................ 85 6.8 TheGradientRevisitedandFixed.................................. 86 6.9 TheDirectionalDerivativeIdentity................................ 87 6.10 IndexJuggling ...................................................... 88 6.11 TheEquivalenceofıi andZ ..................................... 90 j ij 6.12 TheEffectofIndexJugglingontheTensorNotation............. 91 6.13 Summary ............................................................ 91 7 ElementsofLinearAlgebrainTensorNotation ........................ 93 7.1 Preview.............................................................. 93 7.2 The Correspondence Between Contraction andMatrixMultiplication .......................................... 93 7.3 TheFundamentalElementsofLinearAlgebra inTensorNotation .................................................. 96 7.4 Self-AdjointTransformationsandSymmetry ..................... 99 7.5 QuadraticFormOptimization...................................... 101 7.6 TheEigenvalueProblem............................................ 103 7.7 Summary ............................................................ 104 8 CovariantDifferentiation ................................................. 105 8.1 Preview.............................................................. 105 8.2 AMotivatingExample.............................................. 106 8.3 TheLaplacian....................................................... 109 8.4 TheFormulaforr Z .............................................. 112 i j 8.5 TheCovariantDerivativeforGeneralTensors .................... 114 8.6 PropertiesoftheCovariantDerivative............................. 115 8.6.1 TheTensorProperty..................................... 115 8.6.2 TheCovariantDerivativeAppliedtoInvariants........ 117 8.6.3 TheCovariantDerivativeinAffineCoordinates ....... 117 8.6.4 Commutativity ........................................... 118 8.6.5 TheSumRule............................................ 119 8.6.6 TheProductRule ........................................ 119

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.