ebook img

Introduction to statics and dynamics PDF

765 Pages·2002·7.014 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to statics and dynamics

Introduction to S TATICS and D YNAMICS (cid:2) Ms (cid:2) F s ˆ k ˆ ıˆ F1 F2 N N 1 2 Andy Ruina and Rudra Pratap Pre-printforOxfordUniversityPress,January2002 Summary of Mechanics 0) Thelawsofmechanicsapplytoanycollectionofmaterialor‘body.’ Thisbodycouldbetheoverallsystemofstudy oranypartofit. Intheequationsbelow,theforcesandmomentsarethosethatshowonafreebodydiagram. Interacting bodiescauseequalandoppositeforcesandmomentsoneachother. I) LinearMomentumBalance(LMB)/Force(cid:2)Balance EquationofMotion F(cid:2)i =L(cid:2)˙ The total force on a body is equal (I) to its rate of change of linear (cid:3) momentum. I(minpteuglrsaet-imngominetnimtuem) t2(cid:2)F(cid:2)i·dt =(cid:3)L(cid:2) Netimpulseisequaltothechangein (Ia) t1 momentum. Con(cid:4)servationofmomentum L(cid:2)˙ =(cid:2)0 ⇒ (if F(cid:2)i = (cid:2)0) (cid:3)L(cid:2)=L(cid:2)2−L(cid:2)1 = (cid:2)0 Wmohmene nthtuemre diso neso nnoett cfohracneg eth.e linear (Ib) (cid:2) Stat(cid:2)˙ics F(cid:2)i = (cid:2)0 If the inertial terms are zero the (Ic) (ifLisnegligible) net force on system is zero. II) AngularMomentumBalance(AMB)/Mom(cid:2)entBalance Equationofmotion M(cid:2) =H(cid:2)˙ The sum of moments is equal to the (II) C C rateofchangeofangularmomentum. (cid:3) Impulse-momentum(angular) t2(cid:2)M(cid:2) dt =(cid:3)H(cid:2) The net angular impulse is equal to (IIa) (integratingintime) C C t1 the change in angular momentum. C(ifon(cid:4)seMr(cid:2)vati=on(cid:2)0o)fangularmomentum (cid:3)H(cid:2)˙˙HC(cid:2)==(cid:2)0H(cid:2)⇒−H(cid:2) = (cid:2)0 If there is no net moment about point (IIb) C C C2 C1 C then the angular momentum about point C does not change. (cid:2) S(itfaHt(cid:2)i˙csisnegligible) M(cid:2)C = (cid:2)0 If the inertial terms are zero then the (IIc) C total moment on the system is zero. III) PowerBalance(1stlawofthermodynamics) Equationofmotion Q˙ +P = E˙ +E˙ +E˙ Heat flow plus mechanical power (III) (cid:5)K (cid:6)P(cid:7) in(cid:8)t into a system is equal to its change E˙ in energy (kinetic + potential + (cid:3) (cid:3) internal). forfinitetime t2 Q˙dt+ t2 Pdt =(cid:3)E Thenetenergyflowgoinginisequal (IIIa) t1 t1 tothenetchangeinenergy. ConservationofEnergy E˙ =0 ⇒ (ifQ˙ = P =0) (cid:3)E = E −E =0 If no energyflows into a system, (IIIb) 2 1 then its energydoesnotchange. S(itfaEt˙icsisnegligible) Q˙ +P = E˙P+E˙int If there is no change of kinetic energy (IIIc) K then the change of potential and internal energy is due to mechanical work and heat flow. PureMechanics (ifheatflowanddissipation P = E˙ +E˙ In a system well modeled as purely (IIId) K P arenegligible) mechanical the change of kinetic and potential energy is due to mechanical work. Some Definitions (Please also look at the tables inside the back cover.) r(cid:2) or x(cid:2) Position .e.g., r(cid:2)i ≡ r(cid:2)i/Oisthepositionofapoint irelativetotheorigin,O) dr(cid:2) v(cid:2) ≡ Velocity .e.g., v(cid:2)i ≡ v(cid:2)i/Oisthevelocityofapoint dt irelativetoO,measuredinanon-rotating referenceframe) dv(cid:2) d2r(cid:2) a(cid:2) ≡ dt = dt2 Acceleration .e.g.,a(cid:2)i ≡ a(cid:2)i/O istheaccelerationofa pointi relativetoO,measuredinaNew- tonianframe) ω(cid:2) Angularvelocity Ameasureofrotationalvelocityofarigid body. α(cid:2) ≡ ω(cid:2)˙ Angularacceleration Ameasureofrotationalaccelerationofa rigidbody.  (cid:4) L(cid:2) ≡  (cid:12) miv(cid:2)i discrete Linearmomentum Ameasureofasystem’snettranslational  v(cid:2)dm continuous rate(weightedbymass). = m v(cid:2) tot cm  (cid:4) L(cid:2)˙ ≡  (cid:12) mia(cid:2)i discrete Rate of change of linear Theaspectofmotionthatbalancesthenet  a(cid:2)dm continuous momentum forceonasystem. = m a(cid:2) tot cm  (cid:4) H(cid:2) ≡  (cid:12) r(cid:2)i/C× miv(cid:2)i discrete Angular momentum about Ameasureoftherotationalrateofasys- C  r(cid:2)/C ×v(cid:2)dm continuous pointC tem about a point C (weighted by mass anddistancefromC).  (cid:4) H(cid:2)˙ ≡  (cid:12) r(cid:2)i/C× mia(cid:2)i discrete Rateofchangeofangularmo- Theaspectofmotionthatbalancesthenet C  r(cid:2)/C ×a(cid:2)dm continuous mentumaboutpointC torqueonasystemaboutapointC.  (cid:4)  1 m v2 discrete E ≡ 2(cid:12) i i Kineticenergy Ascalarmeasureofnetsystemmotion. K  1 v2dm continuous 2 E = (heat-liketerms) Internalenergy The non-kinetic non-potential part of a int system’stotalenergy. (cid:4) (cid:4) P ≡ F(cid:2)·v(cid:2) + M(cid:2) ·ω(cid:2) Powerofforcesandtorques The mechanical energy flow into a sys- i i i i tem. Also, P ≡W˙,rateofwork.   Icm Icm Icm  xx xy xz    [Icm]≡  Icm Icm Icm  Momentofinertiamatrixabout Ameasureofhowmassisdistributedin  xy yy yz  cm arigidbody. Icm Icm Icm xz yz zz (cid:10)c Rudra Pratap and Andy Ruina, 1994-2002. All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form orbyanymeans,electronic,mechanical,photocopying,orotherwise,withoutprior writtenpermissionoftheauthors. Thisbookisapre-releaseversionofabookinprogressforOxfordUniversityPress. Acknowledgements. The following are amongst those who have helped with this book as editors, artists, tex programmers, advisors, critics or suggestors and cre- atorsofcontent: AlexaBarnes,JosephBurns,JasonCortell,IvanDobrianov,Gabor Domokos,MaxDonelan,ThuDong,GailFish,MikeFox,JohnGibson,RobertGhrist, Saptarsi Haldar, Dave Heimstra, Theresa Howley, Herbert Hui, Michael Marder, Elaina McCartney, Horst Nowacki, Arthur Ogawa, Kalpana Pratap, Richard Rand, Dane Quinn, Phoebus Rosakis, Les Schaeffer, Ishan Sharma, David Shipman, Jill Startzell,SaskyavanNouhuys,BillZobrist. MikeColemanworkedextensivelyon thetext,wrotemanyoftheexamplesandhomeworkproblemsandcreatedmanyof thefigures. DavidHohasdrawnorimprovedmostofthecomputerartwork. Some ofthehomeworkproblemsaremodificationsfromtheCornell’sTheoreticalandAp- pliedMechanicsarchivesandthusareduetoT&AMfacultyortheirlibrariesinways that we do not know how to give proper attribution. Our editor Peter Gordon has beenpatientandsupportivefortoomanyyears. Manyunlistedfriends,colleagues, relatives,students,andanonymousreviewershavealsomadehelpfulsuggestions. SoftwareusedtopreparethisbookincludesTeXtures,BLUESKY’simplementation ofLaTeX,AdobeIllustrator,AdobeStreamline,andMATLAB. MostrecenttextmodificationsonJanuary29,2002. Introduction to S TATICS and D YNAMICS (cid:2) Ms (cid:2) F s ˆ k ˆ ıˆ F1 F2 N N 1 2 Andy Ruina and Rudra Pratap Pre-printforOxfordUniversityPress,January2002 Contents Preface iii Tothestudent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii 1 Whatismechanics? 1 2 Vectorsformechanics 7 2.1 Vectornotationandvectoraddition . . . . . . . . . . . . . . . . . 8 2.2 Thedotproductoftwovectors . . . . . . . . . . . . . . . . . . . . 23 2.3 Crossproduct,moment,andmomentaboutanaxis . . . . . . . . . 32 2.4 Solvingvectorequations . . . . . . . . . . . . . . . . . . . . . . . 50 2.5 Equivalentforcesystems . . . . . . . . . . . . . . . . . . . . . . . 69 3 Freebodydiagrams 79 3.1 Freebodydiagrams . . . . . . . . . . . . . . . . . . . . . . . . . 80 4 Statics 107 4.1 Staticequilibriumofonebody . . . . . . . . . . . . . . . . . . . . 109 4.2 Elementarytrussanalysis . . . . . . . . . . . . . . . . . . . . . . 129 4.3 Advancedtrussanalysis: determinacy,rigidity,andredundancy . . . 138 4.4 Internalforces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 4.5 Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 4.6 Structuresandmachines . . . . . . . . . . . . . . . . . . . . . . . 179 4.7 Hydrostatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 4.8 Advancedstatics . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 5 Dynamicsofparticles 217 5.1 Forceandmotionin1D . . . . . . . . . . . . . . . . . . . . . . . 219 5.2 Energymethodsin1D . . . . . . . . . . . . . . . . . . . . . . . . 233 5.3 Theharmonicoscillator . . . . . . . . . . . . . . . . . . . . . . . 240 5.4 Moreonvibrations: damping . . . . . . . . . . . . . . . . . . . . 257 5.5 Forcedoscillationsandresonance . . . . . . . . . . . . . . . . . . 264 5.6 Coupledmotionsin1D. . . . . . . . . . . . . . . . . . . . . . . . 274 5.7 Timederivativeofavector: position,velocityandacceleration . . . 281 5.8 Spatialdynamicsofaparticle . . . . . . . . . . . . . . . . . . . . 289 5.9 Central-forcemotionandcelestialmechanics . . . . . . . . . . . . 304 5.10 Coupledmotionsofparticlesinspace . . . . . . . . . . . . . . . . 314 6 Constrainedstraightlinemotion 329 6.1 1-Dconstrainedmotionandpulleys . . . . . . . . . . . . . . . . . 330 6.2 2-Dand3-Dforceseventhoughthemotionisstraight . . . . . . . . 343 i ii CONTENTS 7 Circularmotion 359 7.1 Kinematicsofaparticleinplanarcircularmotion . . . . . . . . . . 360 7.2 Dynamicsofaparticleincircularmotion . . . . . . . . . . . . . . 371 7.3 Kinematicsofarigidbodyinplanarcircularmotion . . . . . . . . . 378 7.4 Dynamicsofarigidbodyinplanarcircularmotion . . . . . . . . . 395 7.5 Polarmomentofinertia: Icmand IO . . . . . . . . . . . . . . . . . 410 zz zz 7.6 Using Icmand IO in2-Dcircularmotiondynamics . . . . . . . . . 420 zz zz 8 Generalplanarmotionofasinglerigidbody 437 8.1 Kinematicsofplanarrigid-bodymotion . . . . . . . . . . . . . . . 438 8.2 Generalplanarmechanicsofarigid-body . . . . . . . . . . . . . . 452 8.3 Kinematicsofrollingandsliding. . . . . . . . . . . . . . . . . . . 467 8.4 Mechanicsofcontactingbodies: rollingandsliding . . . . . . . . . 480 8.5 Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 9 Kinematicsusingtime-varyingbasevectors 517 9.1 Polarcoordinatesandpathcoordinates . . . . . . . . . . . . . . . . 518 9.2 Rotatingreferenceframesandtheirtime-varyingbasevectors . . . . 532 9.3 Generalexpressionsforvelocityandacceleration . . . . . . . . . . 545 9.4 Kinematicsof2-Dmechanisms . . . . . . . . . . . . . . . . . . . 558 9.5 Advancekinematicsofplanarmotion . . . . . . . . . . . . . . . . 572 10 Mechanicsofconstrainedparticlesandrigidbodies 581 10.1 Mechanics of a constrained particle and of a particle relative to a movingframe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584 10.2 Mechanicsofone-degree-of-freedom2-Dmechanisms . . . . . . . 602 10.3 Dynamicsofrigidbodiesinmulti-degree-of-freedom2-Dmechanisms618 11 Introductiontothreedimensionalrigidbodymechanics 637 11.1 3-Ddescriptionofcircularmotion . . . . . . . . . . . . . . . . . . 638 11.2 Dynamicsoffixed-axisrotation . . . . . . . . . . . . . . . . . . . 648 11.3 Momentofinertiamatrices . . . . . . . . . . . . . . . . . . . . . 661 11.4 Mechanicsusingthemomentofinertiamatrix . . . . . . . . . . . . 672 11.5 Dynamicbalance . . . . . . . . . . . . . . . . . . . . . . . . . . . 693 A Unitsanddimensions 701 A.1 Unitsanddimensions . . . . . . . . . . . . . . . . . . . . . . . . 701 B Contact: frictionandcollisions 711 B.1 Contactlawsareallroughapproximations . . . . . . . . . . . . . . 712 B.2 Friction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713 B.3 AshortcritiqueofCoulombfriction . . . . . . . . . . . . . . . . . 716 B.4 Collisionmechanics . . . . . . . . . . . . . . . . . . . . . . . . . 721 Homeworkproblems 722 Answersto*’dproblems 831 Index 837 Preface Thisisastaticsanddynamicstextforsecondorthirdyearengineeringstudentswith anemphasisonvectors,freebodydiagrams,thebasicmomentumbalanceprinciples, and the utility of computation. Students often start a course like this thinking of mechanics reasoning as being vague and complicated. Our aim is to replace this loosethinkingwithconcreteandsimplemechanicsproblem-solvingskillsthatlive harmoniouslywithausefulmechanicalintuition. Knowledgeoffreshmancalculusisassumed. Althoughmoststudentshaveseen vectordotandcrossproducts,vectortopicsareintroducedfromscratchinthecontext of mechanics. The use of matrices (to tidy-up systems of linear equations) and of differentialequations(fordescribingmotionindynamics)arepresentedtotheextent needed. The set-up of equations for computer solutions is presented in a pseudo- languageeasilytranslatedbyastudentintooneoranothercomputationpackagethat thestudentknows. Organization Wehaveaimedheretobetterunifythesubject,inpart,byanimprovedorganization. Mechanicscanbesubdividedinvariousways: staticsvsdynamics,particlesvsrigid bodies, and 1 vs 2 vs 3 spatial dimensions. Thus a 12 chapter mechanics table of contentscouldlooklikethis I. Statics II. Dynamics complexity of objects A. particles C. particles rigid 1) 1D 7) 1D body 2) 2D 8) 2D particle number of dimensions 3) 3D 9) 3D static B. rigidbodies D. rigidbodies dynamic 4) 1D 10) 1D 1D 2D 3D 5) 2D 11) 2D how much inertia 6) 3D 12) 3D However,thesetopicsarefarfromequalintheirdifficultyorinthenumberofsubtopics theycontain. Further,therearevariousconceptsandskillsthatarecommontomany ofthe12sub-topics. Dividingmechanicsintothesebitsdistractsfromtheunityofthe subject. Althoughsomevestigesoftheschemeaboveremain,ourbookhasevolved toadifferentorganizationthroughtrialanderror,thoughtandrethought,reviewand revision,andninesemestersofstudenttesting. The first four chapters cover the basics of statics. Dynamics of particles and rigidbodies,basedonprogressivelymoredifficultmotions,ispresentedinchapters five to eleven. Relatively harder topics, that might be skipped in quicker courses, areidentifiablebychapter, sectionorsubsectiontitlescontainingwordslike“three dimensional”or“advanced”. Inmoredetail: iii iv PREFACE Chapter1 defines mechanics as a subject which makes predictions about forces and motionsusingmodelsofmechanicalbehavior,geometry,andthebasicbalance laws. Thelawsofmechanicsareinformallysummarized. Chapter2 introduces vector skills in the context of mechanics. Notational clarity is emphasized because correct calculation is impossible without distinguishing vectorsfromscalars. Vectoradditionismotivatedbytheneedtoaddforcesand relativepositions,dotproductsaremotivatedasthetoolwhichreducesvector equationstoscalarequations,andcrossproductsaremotivatedastheformula whichcorrectlycalculatestheheuristicallymotivatedconceptofmomentand momentaboutanaxis. Chapter3 isaboutfreebodydiagrams. Itisaseparatechapterbecause,inourexperience, gooduseoffreebodydiagramsisalmostsynonymouswithcorrectmechanics problem solution. To emphasize this to students we recommend that, to get anycreditforaproblemthatusesbalancelawsintherestofthecourse,agood freebodydiagrammustbedrawn. Chapter4 makesupashortcourseinstaticsincludinganintroductiontotrusses,mecha- nisms,beamsandhydrostatics. Theemphasisisontwo-dimensionalproblems untilthelast,moreadvancedsection. Solutionmethodsthatdependonkine- matics(i.e.,workmethods)aredeferreduntilthedynamicschapters. Butfor thestretchoflinearsprings,deformationsarenotcovered. Chapter5 isaboutunconstrainedmotionofoneormoreparticles. Itshowshowfar youcangousingF(cid:2)=ma(cid:2)andCartesiancoordinatesin1,2and3dimensions in the absence of kinematic constraints. The first five sections are a thor- oughintroductiontomotionofoneparticleinonedimension,socalledscalar physics,namelytheequation F(x,v,t) = ma andspecialcasesthereof. The chapterincludessomereviewoffreshmancalculusaswellasanintroduction toenergymethods. Afewspecialcasesareemphasized,namely,constantac- celeration,forcedependentonposition(thusmotivatingenergymethods),and theharmonicoscillator. Afteronesectiononcoupledmotionsin1dimension, sections seven to ten discuss motion in two and three dimensions. The easy setupforcomputationoftrajectories,withvariousforcelaws,andevenwith multipleparticles,isemphasized. Thechapterendswithamostlytheoretical sectiononthecenter-of-masssimplificationsforsystemsofparticles. Chapter6 isthefirstchapterthatconcernskinematicconstraintinitssimplestcontext, systems that are constrained to move without rotation in a straight line. In one dimension pulley problems provide the main example. Two and three dimensional problems are covered, such as finding structural support forces inacceleratingvehiclesandtheslowingorincipientcapsizeofabrakingcar. Angular momentum balance is introduced as a needed tool but without the usualcomplexitiesofcurvilinearmotion. Chapter7 treatspurerotationaboutafixedaxisintwodimensions. Polarcoordinates and base vectors are first used here in their simplest possible context. The primaryapplicationsarependulums,geartrains,androtationallyaccelerating motorsorbrakes. Chapter8 treatsgeneralplanarmotionofa(planar)rigidbodyincludingrolling,sliding and free flight. Multi-body systems are also considered so long as they do notinvolveconstraint(i.e.,collisionsandspringconnectionsbutnothingesor prismaticjoints). Chapter9 is entirely about kinematics of particle motion. The over-riding theme is the useofbasevectorswhichchangewithtime. First,thediscussionofpolarcoor- dinatesstartedinchapter7iscompleted. Thenpathcoordinatesareintroduced. Thekinematicsofrelativemotion,atopicthatmanystudentsfinddifficult,is treated carefully but not elaborately in two stages. First using rotating base PREFACE v vectors connected to a moving rigid body and then using the more abstract notationassociatedwiththefamous“fivetermaccelerationformula.” Chapter10 isaboutthemechanicsofparticlesandrigidbodiesutilizingtherelativemo- tionkinematicsideasfromchapter9. Thisisthecapstonechapterforatwo- dimensionaldynamicscourse. Afterthischapteragoodstudentshouldbeable tonavigatethroughandusemostoftheskillsintheconceptmaponpage582. Chapter11 isanintroductionto3Drigidbodymotion. Itextendschapter7tofixedaxis rotation in three dimensions. The key new kinematic tool here is the non- trivial use of the cross product for calculating velocities and accelerations. Fixed axis rotation is the simplest motion with which one can introduce the fullmomentofinertiamatrix, wherethediagonaltermsareanalogoustothe scalar 2D moment of inertia and the off-diagonal terms have a “centripetal” interpretation. Themainnewapplicationisdynamicbalance. Inourexperience goingpastthisistoomuchformostengineeringstudentsinthefirstmechanics courseafterfreshmanphysics,sothebookendshere. AppendixA on units and dimensions is for reference. Because students are immune to preaching about units out of context, such as in an early or late chapter like thisone,themainmessagesarepresentedbyexamplethroughoutthebook(the bookmaybeuniqueamongstmechanicstextsinthisregard): – Allengineeringcalculationsusingdimensionalquantitiesmustbedimen- sionally‘balanced’. – Units are ‘carried’ from one line of calculation to the next by the same rulesasgonumbersandvariables. AppendixB oncontactlaws(frictionandcollisions)isforreferenceforstudentswhopuzzle overtheseissues. Aleisurelyonesemesterstaticscourse,oramorefast-pacedhalfsemesterprelude to strength of materials should use chapters 1-4. A typical one semester dynamics courseshouldcovermostofofchapters5-11precededbytopicsfromchapters1-4, asneeded. Aonesemesterstaticsanddynamicscourseshouldcoverabouttwothirds ofchapters1-6and8. Afullyearstaticsanddynamicscourseshouldcovermostof thebook. Organizationandformatting Eachsubjectiscoveredinvariousways. • Everysectionstartswithdescriptivetextandshortexamplesmotivatingand describingthetheory; • Moredetailedexplanationsofthetheoryareinboxesinterspersedinthetext. Forexample,oneboxexplainsthecommonderivationofangularmomentum balanceformlinearmomentumbalance,oneexplainsthegeniusofthewheel, andanotherconnectsω(cid:2)basedkinematicstoeˆr andeˆθ basedkinematics; • Sampleproblems(markedwithagrayborder)attheendofmostsectionsshow how to do homework-like calculations. These set an example to the student intheirconsistentuseoffreebodydiagrams, systematicapplicationofbasic principles,vectornotation,units,andchecksagainstintuitionandspecialcases; • Homework problems at the end of each chapter give students a chance to practice mechanics calculations. The first problems for each section build a student’sconfidencewiththebasicideas. Theproblemsarerankedinapproxi- mateorderofdifficulty,withtheoreticalquestionslast. Problemsmarkedwith an*haveanansweratthebackofthebook;

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.