ebook img

Introduction to queueing systems with telecommunication applications PDF

386 Pages·2013·2.668 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to queueing systems with telecommunication applications

Introduction to Queueing Systems with Telecommunication Applications La´szlo´ Lakatos (cid:129) L a´szlo´ Szeidl (cid:129) Mikl o´s Telek Introduction to Queueing Systems with Telecommunication Applications 123 La´szlo´ Lakatos La´szlo´ Szeidl Eo¨tvo¨sLora´ndUniversity O´budaUniversity Budapest,Hungary Budapest,Hungary Sze´chenyiIstva´nUniversity Miklo´sTelek Gyo˝r,Hungary BudapestUniversityofTechnology andEconomics Budapest,Hungary ISBN978-1-4614-5316-1 ISBN978-1-4614-5317-8(eBook) DOI10.1007/978-1-4614-5317-8 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2012951675 MathematicsSubjectClassification(2010):60K25,68M20,90B22 ©SpringerScience+BusinessMedia,LLC2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface The development of queueing theory dates back more than a century. Originally theconceptwasexaminedforthepurposeofmaximizingperformanceoftelephone operationcenters;however,itwasrealizedsoonenoughthatissuesinthatfieldthat were solvable using mathematical models might arise in other areas of everyday life as well. Mathematical models, which serve to describe certain phenomena, quite often correspond with each other, regardless of the specific field for which they were originally developed,be that telephone operation centers, planning and management of emergency medical services, description of computer operation, banking services, transportation systems, or other areas. The common feature in theseareasisthatdemandsandservicesoccur(alsoatanabstractlevel)withvarious contentsdependingonthegivenquestions.Inthecourseofmodeling,irrespective of the meaning of demand and service in the modeled system, one is dealing with only moments and time intervals. Thus it can be concluded that, despite the diversityofproblems,acommontheoreticalbackgroundandamathematicaltoolkit can be relied upon that ensures the effective and multiple application of a theory. It is worth noting as an interesting aspect that the beginning of the development of queueing theory is closely connected to the appearance of telephone operation centersmorethanacenturyago,asdescribedpreviously;nevertheless,itstillplays a significant role in the planning, modeling, and analyzing of telecommunication networkssupplementedbyup-to-datesimulationmethodsandprocedures. The authors of this book have been conducting research and modeling in the theoretical and practical field of queueing theory for several decades and teaching in both bachelor’s, master’s, and doctoral programs in the Faculty of Informatics,Eo¨tvo¨sLora´ndUniversity,FacultyofEngineeringSciences,Sze´chenyi Istva´n University, John von Neuman Faculty of Informatics, O´buda University andthe FacultyofElectricalEngineeringandInformatics,BudapestUniversityof TechnologyandEconomics(alllocatedinHungary). Thevariousscientificbackgroundsoftheauthorscomplementeachother;there- fore,bothmathematicalandengineeringapproachesarereflectedinthisbook.The writingofthisbookwaspartlytriggeredbyrequestsfromundergraduateandPh.D. studentsandbythesuggestionsofsupportivecolleagues,allofwhomexpressedthe v vi Preface necessitytowriteabookthatcouldbedirectlyappliedtoinformatics,mathematics, and applied mathematics education as well as other fields. In considering the structureofthebook,theauthorstriedtobrieflysummarizethenecessarytheoretical basisofprobabilitytheoryandstochasticprocesses,whichprovideauniformsystem ofsymbolsandconventionstostudyandmasterthematerialpresentedhere.Atthe end of Part I, the book provides a systematic and detailed treatment of Markov chains, renewal and regenerative processes, Markov chains, and Markov chains with special structures. Following the introductory chapters on probability theory and stochastic processes, we will disregard the various possible interpretations concerning the examples to emphasize terms, methodology, and analytical skills; therefore,wewillprovidetheproofsforeachofthegivenexamples.Wethinkthat this structure will help readers to study the material more effectively since they may have different backgrounds and knowledge concerning this area. Regarding the basics of probability theory, we refer the interested reader to the books [21,31,38,84]. With respect to the general results of stochastic processes and Markov chains, we refer the reader to the following comprehensive literature: [22,26,35,36,48,49,54,71]. In Part II, the book introduces and considers the classic results of Markov andnon-Markovqueueingsystems.Thenqueueingnetworksandappliedqueueing systems(analysisof ATM switches, conflictresolutionmethodsof randomaccess protocols,queueingsystemswithpriorities,andrepeatedordersqueueingsystems) are analyzed. For more on the classic results of queueing theory, we refer the reader to [8,20,39,51,55,69,82], whereas in connectionwith the moderntheory ofqueueingandtelecommunicationsystemsthefollowingbooksmaybeconsulted: [6,7,14–16,34,41,47,83], as well as results published mainly in journals and conferencepapers.Thenumerousexercisesattheendofthechaptersensureabetter understandingofthematerial. A short appendix appears at the end of the book that sums up those special conceptsandideasthatareusedinthebookandthathelpthereadertounderstand thematerialbetter. This work was supported by the European Union and cofinanced by the EuropeanSocialFundunderGrantTA´MOP4.2.1/B-09/1/KMR-2010-0003andby theOTKA GrantNo. K-101150.Theauthorsare indebtedto thePublisherforthe encouragementandtheefficienteditorialsupport. Thebookisrecommendedforstudentsandresearchersstudyingandworkingin thefieldofqueueingtheoryanditsapplications. Budapest,Hungary La´szlo´ Lakatos La´szlo´ Szeidl Miklo´sTelek Contents PartI IntroductiontoProbabilityTheoryandStochastic Processes 1 IntroductiontoProbabilityTheory....................................... 3 1.1 SummaryofBasicNotionsofProbabilityTheory................ 3 1.2 FrequentlyUsedDiscreteandContinuousDistributions ......... 35 1.2.1 DiscreteDistributions..................................... 35 1.2.2 ContinuousDistributions ................................. 39 1.3 LimitTheorems..................................................... 44 1.3.1 ConvergenceNotions ..................................... 44 1.3.2 LawsofLargeNumbers .................................. 46 1.3.3 CentralLimitTheorem,Lindeberg–FellerTheorem .... 48 1.3.4 Infinitely Divisible Distributions and ConvergencetothePoissonDistribution................. 49 1.4 Exercises ............................................................ 52 2 IntroductiontoStochasticProcesses ..................................... 55 2.1 StochasticProcesses................................................ 55 2.2 Finite-DimensionalDistributionsofStochasticProcesses........ 56 2.3 StationaryProcesses................................................ 57 2.4 GaussianProcess.................................................... 58 2.5 StochasticProcesswithIndependentandStationary Increments........................................................... 58 2.6 WienerProcess...................................................... 58 2.7 PoissonProcess..................................................... 59 2.7.1 DefinitionofPoissonProcess............................. 59 2.7.2 ConstructionofPoissonProcess ......................... 62 2.7.3 BasicPropertiesofaHomogeneousPoissonProcess... 67 2.7.4 Higher-DimensionalPoissonProcess.................... 72 2.8 Exercises ............................................................ 76 vii viii Contents 3 MarkovChains ............................................................. 77 3.1 Discrete-TimeMarkovChainswithDiscreteStateSpace ........ 78 3.1.1 HomogeneousMarkovChains ........................... 80 3.1.2 Them-StepTransitionProbabilities...................... 84 3.1.3 ClassificationofStatesofHomogeneous MarkovChains............................................ 86 3.1.4 RecurrentMarkovChains................................. 91 3.2 FundamentalLimitTheoremofHomogeneousMarkov Chains ............................................................... 96 3.2.1 PositiveRecurrentandNullRecurrentMarkov Chains...................................................... 96 3.2.2 StationaryDistributionofMarkovChains............... 100 3.2.3 ErgodicTheoremsforMarkovChains................... 102 3.2.4 EstimationofTransitionProbabilities.................... 104 3.3 Continuous-TimeMarkovChains.................................. 105 3.3.1 Characterization of Homogeneous Continuous-TimeMarkovChains........................ 106 3.3.2 StepwiseMarkovChains ................................. 109 3.3.3 ConstructionofStepwiseMarkovChains ............... 111 3.3.4 SomePropertiesoftheSamplePath ofContinuous-TimeMarkovChains..................... 111 3.3.5 PoissonProcessasContinuous-TimeMarkovChain.... 113 3.3.6 ReversibleMarkovChains................................ 115 3.4 Birth-DeathProcesses .............................................. 116 3.4.1 SomePropertiesofBirth-DeathProcesses............... 116 3.5 Exercises ............................................................ 120 4 RenewalandRegenerativeProcesses..................................... 123 4.1 BasicTheoryofRenewalProcesses ............................... 123 4.1.1 LimitTheoremsforRenewalProcesses.................. 134 4.2 RegenerativeProcesses............................................. 137 4.2.1 EstimationofConvergenceRate forRegenerativeProcesses ............................... 141 4.3 AnalysisMethodsBasedonMarkovProperty .................... 142 4.3.1 Time-HomogeneousBehavior............................ 143 4.4 AnalysisofContinuous-TimeMarkovChains .................... 143 4.4.1 AnalysisBasedonShort-TermBehavior ................ 145 4.4.2 AnalysisBasedonFirstStateTransition................. 146 4.5 Semi-MarkovProcess .............................................. 149 4.5.1 AnalysisBasedonStateTransitions ..................... 151 4.5.2 TransientAnalysisUsingtheMethod ofSupplementaryVariables............................... 154 4.6 MarkovRegenerativeProcess...................................... 159 4.6.1 TransientAnalysisBased onEmbedded MarkovRenewalSeries................................... 160 4.7 Exercises ............................................................ 163 Contents ix 5 MarkovChainswithSpecialStructures ................................. 165 5.1 PhaseTypeDistributions ........................................... 165 5.1.1 Continuous-TimePHDistributions ...................... 165 5.1.2 Discrete-TimePHDistributions.......................... 170 5.1.3 SpecialPHClasses........................................ 171 5.1.4 FittingwithPHDistributions............................. 173 5.2 MarkovArrivalProcess............................................. 173 5.2.1 PropertiesofMarkovArrivalProcesses.................. 176 5.2.2 ExamplesofSimpleMarkovArrivalProcesses ......... 178 5.2.3 BatchMarkovArrivalProcess............................ 180 5.3 Quasi-Birth-DeathProcess ......................................... 181 5.3.1 Matrix-GeometricDistribution........................... 183 5.3.2 Quasi-Birth-and-DeathProcesswithIrregular Level0..................................................... 185 5.3.3 FiniteQuasi-Birth-and-DeathProcess ................... 186 5.4 Exercises ............................................................ 188 PartII QueueingSystems 6 IntroductiontoQueueingSystems........................................ 191 6.1 QueueingSystems .................................................. 191 6.2 ClassificationofBasicQueueingSystems......................... 192 6.3 QueueingSystemPerformanceParameters........................ 193 6.4 Little’sLaw.......................................................... 195 6.5 Exercises ............................................................ 197 7 MarkovianQueueingSystems ............................................ 199 7.1 M=M=1Queue...................................................... 199 7.2 TransientBehaviorofanM=M=1QueueingSystem............. 206 7.3 M=M=mQueueingSystem........................................ 214 7.4 M=M=1QueueingSystem........................................ 218 7.5 M=M=m=mQueueingSystem .................................... 219 7.6 M=M=1==N QueueingSystem.................................... 220 7.7 Exercises ............................................................ 222 8 Non-MarkovianQueueingSystems....................................... 225 8.1 M=G=1QueueingSystem.......................................... 225 8.1.1 DescriptionofM=G=1System........................... 225 8.1.2 MainDifferencesBetweenM=M=1andM=G=1 Systems.................................................... 226 8.1.3 MainMethodsforInvestigatingM=G=1System........ 227 8.2 EmbeddedMarkovChains ......................................... 227 8.2.1 Step(A):DeterminingQueueLength.................... 228 8.2.2 ProofofIrreducibilityandAperiodicity ................. 231 8.2.3 Step(B):ProofofErgodicity............................. 232 8.2.4 Pollaczek–KhinchinMeanValueFormula............... 232

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.