ebook img

Introduction to optimum design PDF

750 Pages·2004·4.79 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to optimum design

Introduction to Optimum Design Introduction to Optimum Design Second Edition Jasbir S. Arora The University of Iowa Amsterdam Boston Heidelberg London New York Oxford Paris San Diego San Francisco Singapore Sydney Tokyo Elsevier Academic Press 525 B Street, Suite 1900, San Diego, California 92101-4495, USA 84 Theobald’s Road, London WC1X 8RR, UK This book is printed on acid-free paper. Copyright ©2004, Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: [email protected]. You may also complete your request on-line via the Elsevier homepage (http://elsevier.com), by selecting “Customer Support” and them “Obtaining Permissions.” Library of Congress Cataloging-in-Publication Data Arora, Jasbir S. Introduction to optimum design / Jasbir S. Arora.—2nd ed. p. cm. Includes bibliographical references and index. ISBN0-12-064155-0 (acid-free paper) 1. Engineering design—Mathematical models. I. Title. TA174.A76 2004 620¢.0042¢015118—dc22 2004046995 British Library Cataloguing in Publication Data Acatalogue record for this book is available from the British Library ISBN: 0-12-064155-0 For all information on all Academic Press publications visit our Web site at books.elsevier.com Printed in the United States of America 04 05 06 07 08 09 9 8 7 6 5 4 3 2 1 Jasbir S. Arora F. Wendell Miller Distinguished Professor of Engineering Department of Civil and Environmental Engineering Department of Mechanical and Industrial Engineering Center for Computer Aided Design College of Engineering The University of Iowa Iowa City, Iowa 52242-1527 To Ruhee Rita Balwant Kaur Wazir Singh Preface I have based the material of the Second Edition on the comments that I had received from the students over the years and on input from colleagues around the world. The text has been rewritten, reorganized, and expanded for the second edition. Particular attention has been paid to the pedagogical aspect of the material. Each chapter starts with a list of learning objectives that the students can keep in mind while studying the material of the chapter. The basic philosophy of the text remains the same as before: to describe an organized approach to engineering design optimization in a rigorous and yet simplified manner, illustrate various concepts and procedures with simple examples, and demonstrate their applicability to engi- neering design problems. Formulation of a design problem as an optimization problem is emphasized and illustrated throughout the text. Some computational algorithms are presented in a step-by-step format to give the students a flavor of the calculations needed for solving optimum design problems. The new material covered in the second edition includes: use of Excel and MATLAB as learning and teaching aids, discrete variable optimization, genetic algorithms, multiobjective optimization, and global optimization. The text can be used in several ways to design different types of courses for undergradu- ate and graduate studies. For undergraduate students, the key question is, “What should be taught on the subject of optimization?” I feel that the material thoroughly covered should be: optimum design problem formulation, basic concepts that characterize an optimum design, basic concepts of numerical methods for optimization, and simple but illustrative examples of optimum design. In addition, some exposure to the use of optimization software would be quite beneficial. With this background, the students would be able to formulate and use soft- ware properly to optimize problems once they go into industry. The basic knowledge gained with this material can serve as a life-long learning tool on the subject of optimum design. Such a course for junior and senior studentsin most branches of engineering can include the following material, augmented with 2- to 3-week-long team projects (project type exercises and sections with advanced material are marked with an “*” in the text): Appendix A. Economic Analysis Chapter 1. Introduction to Design Chapter 2. Optimum Design Problem Formulation Chapter 3. Graphical Optimization Method Chapter 4. Optimum Design Concepts Chapter 6. Linear Programming Methods for Optimum Design Chapter 8. Numerical Methods for Unconstrained Optimum Design Chapter 10. Numerical Methods for Constrained Optimum Design ix Another intermediate level course for seniors and first year graduate students can be designed to augment the above material with Chapter 12 on MATLAB along with more advanced design projects and introduction to discrete variable optimization using the mate- rial contained in Chapters 15 and 16. The pace of material coverage can be a little faster than the course designed for undergraduates only. A two-course sequence for graduate students may be designed using the material from Chapters 1 to 10 and 12 in the first course and the material from Chapters 11 and 13 to 18 for the second course. I have been fortunate to have received advice, encouragement, and help from numerous people around the globe to undertake and complete this project. Without that, a project of this magnitude would not have been possible. I would like sincerely to thank all of them for their input, in particular, Professor Tae Hee Lee of Hanyang University, and my graduate stu- dents Tim Marler and Qian Wang for their special contributions to the text material. Pro- fessor Tae Hee Lee provided me with a first draft of the material for Chapter 12 on Introduction to Optimization with MATLAB. He developed all the examples and the corre- sponding m-files. Tim Marlerprovided me with first draft of the material for Chapter 17 on Multiobjective Optimum Design Concepts and Methods, and Qian Wangprovided me with material related to the use of Excel. Without their contributions this material would not be in the good shape it is now. In addition, Tim Marler, Qian Wang, and Ashok Govil proofread several chapters and provided me with suggestions for improving the presentation of the material. Along with all the individuals mentioned in the first edition, I would like to sincerely thank the following colleagues and friends who provided me with specific suggestionson the material for the second edition of the text: Rick Balling, Ashok Belegundu, Scott Burns, Alex Diaz, Dan Frangopol, Ramana Grandhi, Don Grierson, RafiHaftka, Gene Hou, Tae Hee Lee, T.C. Lin, Kuni Matsui, Duc Nguyen, Makoto Ohsaki, G.J. Park, Subby Rajan, David Thompson, Mats Tinnsten, and Ren-Jye Yang. In addition, the useful exchange of ideas on the subject of optimum design over the years with many colleagues are acknowledged: Santiago Hernández, Hans Eschenauer, Ed Haug, Niels Olhoff, H. Furuta, U. Kirsch, J. Sobieski, Panos Papalambros, Colby Swan, V.K. Goel, F.Y. Cheng, S. Pezeshk, D.H. Choi, Dan Tortorelli, H. Yamakawa, C.M. Chan, Lucien Schmit, V. Kumar, Kwan Rim, Hasan Kamil, Mike Poldneff, Bob Benedict, John Taylor, Marek Rysz, Farrokh Mistree, M.H. Abolbashari, Achille Messac, J. Herskovits, M. Kamat, V. Venkayya, N. Khot, Gary Vanderplaats, B.M. Kwak, George Rozvany, N. Kikuchi, Prabhat Hajela, Z. Gürdal, Nielen Stander, Omar Ghattas, Peter Eriksson, Olof Friberg, Jan Snyman, U. Kirsch, P. Pedersen, K. Truman, C. Mota Soares, Igbal Rai, Rajbir Samra, Jagir Sooch, and many more. I appreciate my colleagues at The University of Iowa who used the first edition of the book to teach an undergraduate course on optimum design: Karim Abdel-Malek, Asghar Bhatti, Kyung Choi, Ray Han, Harry Kane, George Lance, and Emad Tanbour. Their dis- cussions and suggestions have greatly helped in improving the presentation of the material of first 11 chapters of the second edition. I would like to acknowledge all my former graduate students whose thesis work on various topics of optimization contributed to the broadening of my horizon on the subject. The recent work of Mike Huang, C.C. Hsieh, Fatos Kocer, and Ossama Elwakeil has formed the basis for the material of Chapters 15, 16, and 18. I would also like to thank Carla Kinney, Christine Kloiber, Joel Stein, Shoshanna Gross- man and Brandy Palacios of Elsevier Science, and Dan Fitzgerald of Graphic World Pub- lishing Services for their support and superb handling of the manuscript for the book. I am grateful to the Department of Civil and Environmental Engineering, College of Engi- neering, and The University of Iowa for providing me with time, resources, and support for this very satisfying endeavor. Finally, I would like to thank all my family and friends for their love and support. Jasbir Singh Arora Iowa City x Preface

Description:
Introduction to Optimum Design is intended for use in a first course on engineering design and optimization. Virtually any problem for which specific parameters need to be determined to satisfy constraints can be formulated as a design optimization problem. The concepts and methods described in the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.