ebook img

Introduction to Mixed Modelling: Beyond Regression and Analysis of Variance PDF

504 Pages·2014·4.701 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to Mixed Modelling: Beyond Regression and Analysis of Variance

Trimsize:170mmx244mm Galwey ffirs.tex V2-07/25/2014 11:34A.M. Pageii Trimsize:170mmx244mm Galwey ffirs.tex V2-07/25/2014 11:34A.M. Pagei Introduction to Mixed Modelling Trimsize:170mmx244mm Galwey ffirs.tex V2-07/25/2014 11:34A.M. Pageii Trimsize:170mmx244mm Galwey ffirs.tex V2-07/25/2014 11:34A.M. Pageiii Introduction to Mixed Modelling Beyond Regression and Analysis of Variance Second Edition N. W. Galwey Statistical Consulting Group, GlaxoSmithKline, UK Trimsize:170mmx244mm Galwey ffirs.tex V2-07/25/2014 11:34A.M. Pageiv Thiseditionfirstpublished2014 ©2014JohnWiley&Sons,Ltd Registeredoffice JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,United Kingdom Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowtoapply forpermissiontoreusethecopyrightmaterialinthisbookpleaseseeourwebsiteatwww.wiley.com. Therightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewith theCopyright,DesignsandPatentsAct1988. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingor otherwise,exceptaspermittedbytheUKCopyright,DesignsandPatentsAct1988,withouttheprior permissionofthepublisher. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprint maynotbeavailableinelectronicbooks. Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.All brandnamesandproductnamesusedinthisbookaretradenames,servicemarks,trademarksor registeredtrademarksoftheirrespectiveowners.Thepublisherisnotassociatedwithanyproductor vendormentionedinthisbook. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbestefforts inpreparingthisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyor completenessofthecontentsofthisbookandspecificallydisclaimanyimpliedwarrantiesof merchantabilityorfitnessforaparticularpurpose.Itissoldontheunderstandingthatthepublisheris notengagedinrenderingprofessionalservicesandneitherthepublishernortheauthorshallbeliable fordamagesarisingherefrom.Ifprofessionaladviceorotherexpertassistanceisrequired,theservices ofacompetentprofessionalshouldbesought. LibraryofCongressCataloging-in-PublicationData Galwey,Nicholas Introductiontomixedmodelling:beyondregressionandanalysisofvariance/N.W.Galwey. – Secondedition. pagescm Includesbibliographicalreferencesandindex. ISBN978-1-119-94549-9(cloth) 1. Multilevelmodels(Statistics) 2. Experimentaldesign. 3. Regressionanalysis. 4. Analysisof variance. I.Title. QA276.G332014 519.5–dc23 2014021670 AcataloguerecordforthisbookisavailablefromtheBritishLibrary. ISBN:978-1-119-94549-9 Setin10/11.5ptTimesLTstd-RomanbyLaserwordsPrivateLimited,Chennai,India. 1 2014 Trimsize:170mmx244mm Galwey ftoc.tex V1-07/25/2014 6:00P.M. Pagev Contents Preface xi 1 Theneedformorethanonerandom-effecttermwhenfittingaregressionline 1 1.1 AdatasetwithseveralobservationsofvariableYateachvalueof variableX 1 1.2 Simpleregressionanalysis:UseofthesoftwareGenStattoperform theanalysis 2 1.3 Regressionanalysisonthegroupmeans 9 1.4 Aregressionmodelwithatermforthegroups 10 1.5 ConstructionoftheappropriateFtestforthesignificanceofthe explanatoryvariablewhengroupsarepresent 13 1.6 Thedecisiontospecifyamodeltermasrandom:Amixedmodel 14 1.7 Comparisonofthetestsinamixedmodelwithatestoflackoffit 16 1.8 TheuseofREsidualMaximumLikelihood(REML)tofitthemixed model 17 1.9 Equivalenceofthedifferentanalyseswhenthenumberofobservations pergroupisconstant 21 1.10 Testingtheassumptionsoftheanalyses:Inspectionoftheresidualvalues 26 1.11 UseofthesoftwareRtoperformtheanalyses 28 1.12 UseofthesoftwareSAStoperformtheanalyses 33 1.13 FittingamixedmodelusingGenStat’sGraphicalUserInterface(GUI) 40 1.14 Summary 46 1.15 Exercises 47 References 51 2 Theneedformorethanonerandom-effectterminadesignedexperiment 52 2.1 Thesplitplotdesign:Adesignwithmorethanonerandom-effectterm 52 2.2 Theanalysisofvarianceofthesplitplotdesign:Arandom-effecttermfor themainplots 54 2.3 Consequencesoffailuretorecognizethemainplotswhenanalysingthe splitplotdesign 62 2.4 Theuseofmixedmodellingtoanalysethesplitplotdesign 64 2.5 AmoreconservativealternativetotheFandWaldstatistics 66 2.6 Justificationforregardingblockeffectsasrandom 67 Trimsize:170mmx244mm Galwey ftoc.tex V1-07/25/2014 6:00P.M. Pagevi vi Contents 2.7 Testingtheassumptionsoftheanalyses:Inspectionoftheresidualvalues 68 2.8 UseofRtoperformtheanalyses 71 2.9 UseofSAStoperformtheanalyses 77 2.10 Summary 81 2.11 Exercises 82 References 86 3 Estimationofthevariancesofrandom-effectterms 87 3.1 Theneedtoestimatevariancecomponents 87 3.2 Ahierarchicalrandom-effectsmodelforathree-stageassayprocess 87 3.3 Therelationshipbetweenvariancecomponentsandstratummeansquares 91 3.4 Estimationofthevariancecomponentsinthehierarchicalrandom-effects model 93 3.5 Designofanoptimumstrategyforfuturesampling 95 3.6 UseofRtoanalysethehierarchicalthree-stageassayprocess 98 3.7 UseofSAStoanalysethehierarchicalthree-stageassayprocess 100 3.8 Geneticvariation:Acropfieldtrialwithanunbalanceddesign 102 3.9 Productionofabalancedexperimentaldesignby‘padding’with missingvalues 106 3.10 Specificationofatreatmenttermasarandom-effectterm:Theuseof mixed-modelanalysistoanalyseanunbalanceddataset 110 3.11 Comparisonofavariancecomponentestimatewithitsstandarderror 112 3.12 Analternativesignificancetestforvariancecomponents 113 3.13 Comparisonamongsignificancetestsforvariancecomponents 116 3.14 Inspectionoftheresidualvalues 117 3.15 Heritability:Thepredictionofgeneticadvanceunderselection 117 3.16 UseofRtoanalysetheunbalancedfieldtrial 122 3.17 UseofSAStoanalysetheunbalancedfieldtrial 125 3.18 Estimationofvariancecomponentsintheregressionanalysison groupeddata 128 3.19 Estimationofvariancecomponentsforblockeffectsinthesplit-plot experimentaldesign 130 3.20 Summary 132 3.21 Exercises 133 References 136 4 Intervalestimatesforfixed-effecttermsinmixedmodels 137 4.1 Theconceptofanintervalestimate 137 4.2 Standarderrorsforregressioncoefficientsinamixed-modelanalysis 138 4.3 Standarderrorsfordifferencesbetweentreatmentmeansinthesplit-plot design 142 4.4 Asignificancetestforthedifferencebetweentreatmentmeans 144 4.5 Theleastsignificantdifference(LSD)betweentreatmentmeans 147 4.6 Standarderrorsfortreatmentmeansindesignedexperiments: Adifferenceinapproachbetweenanalysisofvarianceand mixed-modelanalysis 151 4.7 UseofRtoobtainSEsofmeansinadesignedexperiment 157 Trimsize:170mmx244mm Galwey ftoc.tex V1-07/25/2014 6:00P.M. Pagevii vii Contents 4.8 UseofSAStoobtainSEsofmeansinadesignedexperiment 159 4.9 Summary 161 4.10 Exercises 163 References 164 5 Estimationofrandomeffectsinmixedmodels:BestLinearUnbiased Predictors(BLUPs) 165 5.1 Thedifferencebetweentheestimatesoffixedandrandomeffects 165 5.2 Themethodforestimationofrandomeffects:Thebestlinearunbiased predictor(BLUP)or‘shrunkestimate’ 168 5.3 TherelationshipbetweentheshrinkageofBLUPsandregressiontowards themean 170 5.4 UseofRfortheestimationoffixedandrandomeffects 176 5.5 UseofSASfortheestimationofrandomeffects 178 5.6 TheBayesianinterpretationofBLUPs:Justificationofarandom-effect termwithoutinvokinganunderlyinginfinitepopulation 182 5.7 Summary 187 5.8 Exercises 188 References 191 6 Moreadvancedmixedmodelsformoreelaboratedatasets 192 6.1 Featuresofthemodelsintroducedsofar:Areview 192 6.2 Furthercombinationsofmodelfeatures 192 6.3 Thechoiceofmodeltermstobespecifiedasrandom 195 6.4 Disagreementconcerningtheappropriatesignificancetestwhenfixed- andrandom-effecttermsinteract:‘Thegreatmixed-modelmuddle’ 197 6.5 Argumentsforspecifyingblockeffectsasrandom 204 6.6 Examplesofthechoiceoffixed-andrandom-effectspecificationofterms 209 6.7 Summary 213 6.8 Exercises 215 References 216 7 Threecasestudies 217 7.1 Furtherdevelopmentofmixedmodellingconceptsthroughtheanalysis ofspecificdatasets 217 7.2 Afixed-effectsmodelwithseveralvariatesandfactors 218 7.3 UseofRtofitthefixed-effectsmodelwithseveralvariatesandfactors 233 7.4 UseofSAStofitthefixed-effectsmodelwithseveralvariatesandfactors 237 7.5 Arandomcoefficientregressionmodel 242 7.6 UseofRtofittherandomcoefficientsmodel 246 7.7 UseofSAStofittherandomcoefficientsmodel 247 7.8 Arandom-effectsmodelwithseveralfactors 249 7.9 UseofRtofittherandom-effectsmodelwithseveralfactors 266 7.10 UseofSAStofittherandom-effectsmodelwithseveralfactors 274 7.11 Summary 282 7.12 Exercises 282 References 294 Trimsize:170mmx244mm Galwey ftoc.tex V1-07/25/2014 6:00P.M. Pageviii viii Contents 8 Meta-analysisandthemultipletestingproblem 295 8.1 Meta-analysis:Combinedanalysisofasetofstudies 295 8.2 Fixed-effectmeta-analysiswithestimationonlyofthemaineffectof treatment 296 8.3 Random-effectsmeta-analysiswithestimationofstudy×treatment interactioneffects 301 8.4 Arandom-effectinteractionbetweentwofixed-effectterms 303 8.5 Meta-analysisofindividual-subjectdatausingR 307 8.6 Meta-analysisofindividual-subjectdatausingSAS 312 8.7 Meta-analysiswhenonlysummarydataareavailable 318 8.8 Themultipletestingproblem:ShrinkageofBLUPsasadefenceagainst theWinner’sCurse 326 8.9 FittingofmultiplemodelsusingR 338 8.10 FittingofmultiplemodelsusingSAS 340 8.11 Summary 342 8.12 Exercises 343 References 348 9 Theuseofmixedmodelsfortheanalysisofunbalancedexperimentaldesigns 350 9.1 Abalancedincompleteblockdesign 350 9.2 Imbalanceduetoamissingblock:Mixed-modelanalysisofthe incompleteblockdesign 354 9.3 UseofRtoanalysetheincompleteblockdesign 358 9.4 UseofSAStoanalysetheincompleteblockdesign 360 9.5 Relaxationoftherequirementforbalance:Alphadesigns 362 9.6 Approximatebalanceintwodirections:Thealphalphadesign 368 9.7 UseofRtoanalysethealphalphadesign 373 9.8 UseofSAStoanalysethealphalphadesign 374 9.9 Summary 376 9.10 Exercises 377 References 378 10 Beyondmixedmodelling 379 10.1 Reviewoftheusesofmixedmodels 379 10.2 Thegeneralizedlinearmixedmodel(GLMM):Fittingalogistic (sigmoidal)curvetoproportionsofobservations 380 10.3 UseofRtofitthelogisticcurve 388 10.4 UseofSAStofitthelogisticcurve 390 10.5 FittingaGLMMtoacontingencytable:Trouble-shootingwhenthe mixedmodellingprocessfails 392 10.6 Thehierarchicalgeneralizedlinearmodel(HGLM) 403 10.7 UseofRtofitaGLMMandaHGLMtoacontingencytable 410 10.8 UseofSAStofitaGLMMtoacontingencytable 415 10.9 Theroleofthecovariancematrixinthespecificationofamixedmodel 418 10.10 Amoregeneralpatterninthecovariancematrix:Analysisofpedigrees andgeneticdata 421

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.