ebook img

Introduction to Mathematical Systems Theory: Discrete time Linear Systems, Control and Identification PDF

199 Pages·2021·2.755 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to Mathematical Systems Theory: Discrete time Linear Systems, Control and Identification

Christiaan Heij André C. M. Ran Frederik van Schagen Introduction to Mathematical Systems Theory Discrete Time Linear Systems, Control and Identifi cation Second Edition Introduction to Mathematical Systems Theory Christiaan Heij • André C. M. Ran (cid:129) Frederik van Schagen Introduction to Mathematical Systems Theory Discrete Time Linear Systems, Control and Identification Second Edition ChristiaanHeij AndréC.M.Ran DepartmentofEconometrics DepartmentofMathematics ErasmusUniversityRotterdam VrijeUniversiteit Rotterdam,TheNetherlands Amsterdam,TheNetherlands FrederikvanSchagen DepartmentofMathematics VrijeUniversiteit Amsterdam,TheNetherlands ISBN978-3-030-59652-1 ISBN978-3-030-59654-5 (eBook) https://doi.org/10.1007/978-3-030-59654-5 MathematicsSubjectClassification:93-XX 1stedition:©BirkhäuserBasel2007 2ndedition:©SpringerNatureSwitzerlandAG2021 ©SpringerNatureSwitzerlandAG2021 Thisworkissubjecttocopyright. Allrightsaresolelyandexclusively licensedbythePublisher,whetherthe wholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storage andretrieval, electronic adaptation, computer software, orbysimilar ordissimilar methodology now knownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublicationdoes notimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbookare believedtobetrueandaccurateatthedateofpublication. Neitherthepublishernortheauthorsortheeditors giveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforanyerrorsoromissions thatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictionalclaimsinpublishedmaps andinstitutionalaffiliations. ThisbookispublishedundertheimprintBirkhäuser,www.birkhauser-science.com,bytheregisteredcompany SpringerNatureSwitzerlandAG. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface This book has grown out of more than 15years of lecturing an introductory course in systemtheory,controlandidentificationforstudentsintheareasofBusinessMathematics and Computer Science, Econometrics and Mathematics at the Vrije Universiteit in Amsterdam. The interests and mathematical background of our students motivated our choicetofocusonsystemsindiscretetimeonly,becausethetopicscanthenbestudiedand understood without preliminary knowledge of (deterministic and stochastic) differential equations.Thisbookdoesrequiresomepreliminaryknowledgeofcalculus,linearalgebra, probabilityandstatistics,andsomepartsusetheelementaryresultsonFourierseries. The book treats the standard topics of introductory courses in linear systems and control theory. Deterministic systems are discussed in the first five chapters, with the following main topics: realization theory, observability and controllability, stability and stabilization by feedback, and linear quadratic optimal control. Stochastic systems are treated in Chaps.6 to 8, with main topics:realization,filteringand prediction(including the Kalman filter), and linear quadratic Gaussian optimal control. Chapters 9 and 10 discuss system identification and modelling from data, and Chap.11 concludes with a briefoverviewoffurthertopics. Exercises form an essential ingredient of any successful course in this area. The exercises are not printed in the book and are instead incorporatedon the accompanying CD-ROM. Theexercisesare oftwo types:thatis, theoryexercisesto trainmathematical skillsinsystemtheoryandpracticalexercisesapplyingsystemandcontrolmethodstodata setsthatarealsoincludedontheCD-ROM.ManyexercisesrequiretheuseofMatlabora similarsoftwarepackage. We did benefit greatly from the comments of many colleagues who, over the years, participatedinteachingfromthisbook.Inparticular,weliketomentionthecontributions of(inalphabeticalorder)SanneterHorst,RienKaashoek,DerkPik,JanH.vanSchuppen and Alistair Vardy. We thank them for their comments, which have improved the text considerably. In addition, many students helped us in improving the text by asking questionsandpointingoutmisprints. v vi Preface PrefacetotheSecondEdition Thesecondeditionofthebookisaslightlyalteredversionofthefirstedition.Wecorrected manymisprintsand mis-statementsthat were presentin the first edition.In addition,we mademanysmallchangestothetexttoimprovereadability. There are several more extensive changes as well. Chapter 3 has been expanded to incorporate two sections dealing with the subspace identification algorithm, providing a construction of a minimal realization directly from sequences of inputs and outputs. In Sect.6.5, material was added to make the discussion of spectra of several types of processesmorecomplete.Chapter11hasbeenexpandedwithseveralpartsdealingwith modern developments.In connectionwith this, the list of referenceshas been expanded considerably.Wehopethiswillbeusefulbyprovidingpointersforfurtherstudy. Changingtechnologyhaschangedthewayinwhichtheexercisesarepresented.Atthe timeofwritingofthefirstedition,aCD-ROMwasstateoftheart;however,present-day laptopsare not equippedwith a CD drive anymore.For that reason, we have decided to maketheexercisesavailableasaseparatefileontheSpringerLink’sbookwebsite. Rotterdam,TheNetherlands ChristiaanHeij Amsterdam,TheNetherlands AndréC.M.Ran Amsterdam,TheNetherlands FrederikvanSchagen ElectronicSupplementaryMaterialTheonlineversionofthisbook(https://doi.org/10.1007/978- 3-030-59654-5_11)containssupplementarymaterial,whichisavailabletoauthorizedusers. Contents 1 DynamicalSystems................................................................ 1 1.1 Introduction.................................................................. 1 1.2 SystemsandLaws........................................................... 5 1.3 StateRepresentations ....................................................... 7 1.4 Illustration ................................................................... 8 2 Input-OutputSystems............................................................. 11 2.1 InputsandOutputsintheTimeDomain ................................... 11 2.2 FrequencyDomainandTransferFunctions................................ 14 2.3 StateSpaceModels.......................................................... 16 2.4 EquivalentandMinimalRealizations...................................... 22 2.5 TheRestrictedShiftRealization............................................ 23 3 StateSpaceModels................................................................ 27 3.1 Controllability............................................................... 27 3.2 Observability ................................................................ 30 3.3 StructureTheoryofRealizations........................................... 34 3.4 AnAlgorithmforMinimalRealizations................................... 39 3.5 TheSubspaceIdentificationAlgorithm.................................... 41 3.6 AnExample ................................................................. 45 4 Stability............................................................................. 49 4.1 InternalStability............................................................. 49 4.2 Input-OutputStability....................................................... 54 4.3 StabilizationbyStateFeedback ............................................ 57 4.4 StabilizationbyOutputFeedback.......................................... 60 5 OptimalControl ................................................................... 65 5.1 ProblemStatement.......................................................... 65 5.2 DynamicProgramming..................................................... 68 5.3 LinearQuadraticControl ................................................... 72 vii viii Contents 6 StochasticSystems................................................................. 81 6.1 Modelling.................................................................... 81 6.2 StationaryProcesses......................................................... 82 6.3 ARMAProcesses............................................................ 86 6.4 StateSpaceModels.......................................................... 89 6.5 SpectraandtheFrequencyDomain ........................................ 94 6.6 StochasticInput-OutputSystems........................................... 99 7 FilteringandPrediction........................................................... 101 7.1 TheFilteringProblem....................................................... 101 7.2 SpectralFiltering............................................................ 104 7.3 TheKalmanFilter........................................................... 108 7.4 TheSteadyStateFilter...................................................... 116 8 StochasticControl................................................................. 121 8.1 Introduction.................................................................. 121 8.2 StochasticDynamicProgramming......................................... 122 8.3 LQGControlwithStateFeedback ......................................... 125 8.4 LQGControlwithOutputFeedback....................................... 129 9 SystemIdentification.............................................................. 137 9.1 Identification................................................................. 137 9.2 RegressionModels.......................................................... 138 9.3 MaximumLikelihood....................................................... 141 9.4 EstimationofAutoregressiveModels...................................... 143 9.5 EstimationofARMAXModels ............................................ 147 9.6 ModelValidation............................................................ 150 9.6.1 LagOrders......................................................... 150 9.6.2 ResidualTests...................................................... 151 9.6.3 InputsandOutputs................................................. 153 9.6.4 ModelSelection ................................................... 155 10 CyclesandTrends ................................................................. 157 10.1 ThePeriodogram............................................................ 157 10.2 SpectralIdentification....................................................... 163 10.3 Trends........................................................................ 170 10.4 SeasonalityandNonlinearities.............................................. 172 11 FurtherDevelopments ............................................................ 177 11.1 ContinuousTimeSystems .................................................. 177 11.2 OptimalControl............................................................. 178 Contents ix 11.3 NonlinearSystems .......................................................... 180 11.3.1 ApplicationsinLifeSciences..................................... 182 11.4 InfiniteDimensionalSystems............................................... 182 11.5 RobustandAdaptiveControl............................................... 183 11.6 StochasticSystems.......................................................... 186 11.7 NetworkedSystems......................................................... 186 11.8 HybridSystems.............................................................. 187 11.9 SystemIdentification........................................................ 187 Bibliography............................................................................. 189 Index...................................................................................... 193 1 Dynamical Systems 1.1 Introduction Many phenomena investigated in such diverse areas as physics, biology, engineering, and economics show a dynamical evolution over time. Examples are thermodynamics and electromagnetism in physics, chemical processes and adaptation in biology, control systems in engineering,and decisionmakingin macroeconomics,finance,and business economics.Themainquestionsanalysedinthisbookarethefollowing. (cid:129) Whattypeofmathematicalmodelscanbeusedtostudysuchdynamicalprocesses? (cid:129) Onceamodelclassisselectedandweknowtheparametersinthemodel,howcanwe achievespecificobjectivessuchasstability,uncertaintyreductionandoptimaldecision making? (cid:129) Ifwedonotknowtheparametersinthemodelexactly,howcanweestimatethemfrom availabledataandhowreliableistheobtainedmodel? The first question is the topic of Chaps. 2, 3 and 6, the second one of Chaps. 4, 5, 7, 8 and 9, and the third one of Chaps. 9 and 10. The answers to these questions will in general depend on accidental particularities of the problem at hand. However, there are important common characteristics of these problems which can be expressed in terms of mathematical models. We first give some examples to illustrate the main ideas in modelling,estimation,forecastingandcontrol. Example1.1.1 Suppose that for a certain good the market functions as follows. The quantity currently produced will be supplied to the market in the next period. Supply and demand determine the market price. Let D denote the quantity demanded, S the ˆ quantity supplied, P the market price, P the anticipated price used by the suppliers in ©TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2021 1 C.Heijetal.,IntroductiontoMathematicalSystemsTheory, https://doi.org/10.1007/978-3-030-59654-5_1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.