ebook img

Introduction to Mathematical Statistics PDF

705 Pages·2012·6.678 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to Mathematical Statistics

Introduction to Mathematical Statistics Seventh Edition Robert V. Hogg University of Iowa Joseph W. McKean Western Michigan University Allen T. Craig Late Professor of Statistics University of Iowa Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo Editor in Chief: Deirdre Lynch Acquisitions Editor: Christopher Cummings Sponsoring Editor: Christina Lepre Editorial Assistant: Sonia Ashraf Senior Managing Editor: Karen Wernholm Senior Production Project Manager: Beth Houston Digital Assets Manager: Marianne Groth Marketing Manager: Erin K. Lane Marketing Coordinator: Kathleen DeChavez Senior Author Support/Technology Specialist: Joe Vetere Rights and Permissions Advisor: Michael Joyce Manufacturing Buyer: Debbie Rossi Cover Image: Fotolia: Yurok Aleksandrovich Creative Director: Jayne Conte Designer: Suzanne Behnke Many of the designations used by manufacturers and sellers to distinguish their productsareclaimedastrademarks. Wherethosedesignationsappearinthisbook, andPearsonEducationwasawareofatrademarkclaim,thedesignationshavebeen printed in initial caps or all caps. Library of Congress Cataloging-in-Publications Data Hogg, Robert V. Introduction to mathematical statistics / Robert V. Hogg, Joseph W. McKean, Allen T. Craig. – 7th ed. p. cm. ISBN 978-0-321-79543-4 1. Mathematical statistics. I. McKean, Joseph W., 1944- II. Craig, Allen T. (Allen Thorton), 1905- III. Title. QA276.H59 2013 519.5–dc23 2011034906 Copyright 2013, 2005, 1995 PearsonEducation, Inc. All rights reserved. No part of this publication may be reproduced, stored in a re- trievalsystem,ortransmitted,inanyformorbyanymeans,electronic,mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America . For information on obtain- ing permission for use of material in this work, please submit a written request to Pearson Education, Inc., Rights and Contracts Department, 501 Boylston Street, Suite 900 , Boston , MA 02116 , fax your request to 617-671-3447, or e-mail at http://www.pearsoned.com/legal/permissions.htm. 1 2 3 4 5 6 7 8 9 10CRS15 14 13 12 11 www.pearsonhighered.com ISBN 13: 978-0-321-79543-4 ISBN 10: 0-321-79543-1 To Ann and to Marge This page intentionally left blank Contents Preface ix 1 Probability and Distributions 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 The Probability Set Function . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Conditional Probability and Independence . . . . . . . . . . . . . . . 21 1.5 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.6 Discrete Random Variables . . . . . . . . . . . . . . . . . . . . . . . 40 1.6.1 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 42 1.7 Continuous Random Variables. . . . . . . . . . . . . . . . . . . . . . 44 1.7.1 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 46 1.8 Expectation of a Random Variable . . . . . . . . . . . . . . . . . . . 52 1.9 Some Special Expectations . . . . . . . . . . . . . . . . . . . . . . . 57 1.10 Important Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2 Multivariate Distributions 73 2.1 Distributions of Two Random Variables . . . . . . . . . . . . . . . . 73 2.1.1 Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 2.2 Transformations: Bivariate Random Variables . . . . . . . . . . . . . 84 2.3 Conditional Distributions and Expectations . . . . . . . . . . . . . . 94 2.4 The Correlation Coefficient . . . . . . . . . . . . . . . . . . . . . . . 102 2.5 Independent Random Variables . . . . . . . . . . . . . . . . . . . . . 110 2.6 Extension to Several Random Variables . . . . . . . . . . . . . . . . 117 2.6.1 ∗Multivariate Variance-CovarianceMatrix . . . . . . . . . . . 123 2.7 Transformations for Several Random Variables . . . . . . . . . . . . 126 2.8 Linear Combinations of Random Variables . . . . . . . . . . . . . . . 134 3 Some Special Distributions 139 3.1 The Binomial and Related Distributions . . . . . . . . . . . . . . . . 139 3.2 The Poisson Distribution . . . . . . . . . . . . . . . . . . . . . . . . 150 3.3 The Γ, χ2, and β Distributions . . . . . . . . . . . . . . . . . . . . . 156 3.4 The Normal Distribution. . . . . . . . . . . . . . . . . . . . . . . . . 168 3.4.1 Contaminated Normals . . . . . . . . . . . . . . . . . . . . . 174 v vi Contents 3.5 The Multivariate Normal Distribution . . . . . . . . . . . . . . . . . 178 3.5.1 ∗Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 3.6 t- and F-Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 189 3.6.1 The t-distribution . . . . . . . . . . . . . . . . . . . . . . . . 189 3.6.2 The F-distribution . . . . . . . . . . . . . . . . . . . . . . . . 191 3.6.3 Student’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . 193 3.7 Mixture Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 197 4 Some Elementary Statistical Inferences 203 4.1 Sampling and Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 203 4.1.1 Histogram Estimates of pmfs and pdfs . . . . . . . . . . . . . 207 4.2 Confidence Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 4.2.1 Confidence Intervals for Difference in Means. . . . . . . . . . 217 4.2.2 Confidence Interval for Difference in Proportions . . . . . . . 219 4.3 Confidence Intervals for Parameters of Discrete Distributions . . . . 223 4.4 Order Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 4.4.1 Quantiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 4.4.2 Confidence Intervals for Quantiles . . . . . . . . . . . . . . . 234 4.5 Introduction to Hypothesis Testing . . . . . . . . . . . . . . . . . . . 240 4.6 Additional Comments About Statistical Tests . . . . . . . . . . . . . 248 4.7 Chi-Square Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 4.8 The Method of Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . 261 4.8.1 Accept–Reject Generation Algorithm. . . . . . . . . . . . . . 268 4.9 Bootstrap Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 273 4.9.1 Percentile Bootstrap Confidence Intervals . . . . . . . . . . . 273 4.9.2 Bootstrap Testing Procedures . . . . . . . . . . . . . . . . . . 276 4.10 ∗Tolerance Limits for Distributions . . . . . . . . . . . . . . . . . . . 284 5 Consistency and Limiting Distributions 289 5.1 Convergence in Probability . . . . . . . . . . . . . . . . . . . . . . . 289 5.2 Convergence in Distribution . . . . . . . . . . . . . . . . . . . . . . . 294 5.2.1 Bounded in Probability . . . . . . . . . . . . . . . . . . . . . 300 5.2.2 Δ-Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 5.2.3 Moment Generating Function Technique . . . . . . . . . . . . 303 5.3 Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 307 5.4 ∗Extensions to Multivariate Distributions . . . . . . . . . . . . . . . 314 6 Maximum Likelihood Methods 321 6.1 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . . 321 6.2 Rao–Cram´erLower Bound and Efficiency . . . . . . . . . . . . . . . 327 6.3 Maximum Likelihood Tests . . . . . . . . . . . . . . . . . . . . . . . 341 6.4 Multiparameter Case: Estimation . . . . . . . . . . . . . . . . . . . . 350 6.5 Multiparameter Case: Testing . . . . . . . . . . . . . . . . . . . . . . 359 6.6 The EM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 Contents vii 7 Sufficiency 375 7.1 Measures of Quality of Estimators . . . . . . . . . . . . . . . . . . . 375 7.2 A Sufficient Statistic for a Parameter . . . . . . . . . . . . . . . . . . 381 7.3 Properties of a Sufficient Statistic . . . . . . . . . . . . . . . . . . . . 388 7.4 Completeness and Uniqueness . . . . . . . . . . . . . . . . . . . . . . 392 7.5 The Exponential Class of Distributions . . . . . . . . . . . . . . . . . 397 7.6 Functions of a Parameter . . . . . . . . . . . . . . . . . . . . . . . . 402 7.7 The Case of Several Parameters . . . . . . . . . . . . . . . . . . . . . 407 7.8 Minimal Sufficiency and Ancillary Statistics . . . . . . . . . . . . . . 415 7.9 Sufficiency, Completeness, and Independence . . . . . . . . . . . . . 421 8 Optimal Tests of Hypotheses 429 8.1 Most Powerful Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 429 8.2 Uniformly Most Powerful Tests . . . . . . . . . . . . . . . . . . . . . 439 8.3 Likelihood Ratio Tests . . . . . . . . . . . . . . . . . . . . . . . . . . 447 8.4 The Sequential Probability Ratio Test . . . . . . . . . . . . . . . . . 459 8.5 Minimax and Classification Procedures . . . . . . . . . . . . . . . . . 466 8.5.1 Minimax Procedures . . . . . . . . . . . . . . . . . . . . . . . 466 8.5.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 469 9 Inferences About Normal Models 473 9.1 Quadratic Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473 9.2 One-Way ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478 9.3 Noncentral χ2 and F-Distributions . . . . . . . . . . . . . . . . . . . 484 9.4 Multiple Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . 486 9.5 The Analysis of Variance . . . . . . . . . . . . . . . . . . . . . . . . 490 9.6 A Regression Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 497 9.7 A Test of Independence . . . . . . . . . . . . . . . . . . . . . . . . . 506 9.8 The Distributions of Certain Quadratic Forms. . . . . . . . . . . . . 509 9.9 The Independence of Certain Quadratic Forms . . . . . . . . . . . . 516 10 Nonparametric and Robust Statistics 525 10.1 Location Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525 10.2 Sample Median and the Sign Test. . . . . . . . . . . . . . . . . . . . 528 10.2.1 Asymptotic Relative Efficiency . . . . . . . . . . . . . . . . . 533 10.2.2 Estimating Equations Based on the Sign Test . . . . . . . . . 538 10.2.3 Confidence Interval for the Median . . . . . . . . . . . . . . . 539 10.3 Signed-Rank Wilcoxon . . . . . . . . . . . . . . . . . . . . . . . . . . 541 10.3.1 Asymptotic Relative Efficiency . . . . . . . . . . . . . . . . . 546 10.3.2 Estimating Equations Based on Signed-Rank Wilcoxon . . . 549 10.3.3 Confidence Interval for the Median . . . . . . . . . . . . . . . 549 10.4 Mann–Whitney–Wilcoxon Procedure . . . . . . . . . . . . . . . . . . 551 10.4.1 Asymptotic Relative Efficiency . . . . . . . . . . . . . . . . . 555 10.4.2 Estimating Equations Based on the Mann–Whitney–Wilcoxon 556 10.4.3 Confidence Interval for the Shift Parameter Δ. . . . . . . . . 557 10.5 General Rank Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . 559 viii Contents 10.5.1 Efficacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562 10.5.2 Estimating Equations Based on General Scores . . . . . . . . 563 10.5.3 Optimization: Best Estimates . . . . . . . . . . . . . . . . . . 564 10.6 Adaptive Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . 571 10.7 Simple Linear Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 576 10.8 Measures of Association . . . . . . . . . . . . . . . . . . . . . . . . . 581 10.8.1 Kendall’s τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582 10.8.2 Spearman’s Rho . . . . . . . . . . . . . . . . . . . . . . . . . 584 10.9 Robust Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588 10.9.1 Location Model . . . . . . . . . . . . . . . . . . . . . . . . . . 589 10.9.2 Linear Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 595 11 Bayesian Statistics 605 11.1 Subjective Probability . . . . . . . . . . . . . . . . . . . . . . . . . . 605 11.2 Bayesian Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . 608 11.2.1 Prior and Posterior Distributions . . . . . . . . . . . . . . . . 609 11.2.2 Bayesian Point Estimation. . . . . . . . . . . . . . . . . . . . 612 11.2.3 Bayesian Interval Estimation . . . . . . . . . . . . . . . . . . 615 11.2.4 Bayesian Testing Procedures . . . . . . . . . . . . . . . . . . 616 11.2.5 Bayesian Sequential Procedures . . . . . . . . . . . . . . . . . 617 11.3 More Bayesian Terminology and Ideas . . . . . . . . . . . . . . . . . 619 11.4 Gibbs Sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626 11.5 Modern BayesianMethods . . . . . . . . . . . . . . . . . . . . . . . . 632 11.5.1 Empirical Bayes . . . . . . . . . . . . . . . . . . . . . . . . . 636 A Mathematical Comments 641 A.1 Regularity Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 641 A.2 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642 B R Functions 645 C Tables of Distributions 655 D Lists of Common Distributions 665 E References 669 F Answers to Selected Exercises 673 Index 683 Preface Changes for Seventh Edition In the preparation of this seventh edition, our goal has remained steadfast: to produceanoutstandingtextinmathematicalstatistics. Inthisnewedition,wehave addedexamplesandexercisestohelpclarifytheexposition. Forthesamereason,we havemovedsomematerialforward. Forexample,we movedthe discussiononsome properties of linear combinations of random variables from Chapter 4 to Chapter 2. This helps in the discussion of statistical properties in Chapter 3 as well as in the new Chapter 4. One of the major changes was moving the chapter on “Some Elementary Sta- tistical Inferences,” from Chapter 5 to Chapter 4. This chapter on inference covers confidence intervals and statistical tests of hypotheses, two of the most important conceptsinstatisticalinference. We beginChapter4withadiscussionofarandom sample and point estimation. We introduce point estimation via a brief discussion of maximum likelihood estimation (the theory of maximum likelihood inference is still fullly discussed in Chapter 6). In Chapter 4, though, the discussion is illus- trated with examples. After discussing point estimation in Chapter 4, we proceed onto confidence intervals and hypotheses testing. Inference for the basic one- and two-sample problems (large and small samples) is presented. We illustrate this discussion with plenty of examples, several of which are concerned with real data. We have also added exercises dealing with real data. The discussion has also been updated; for example, exact confidence intervals for the parameters of discrete dis- tributions andbootstrapconfidenceintervals andtests ofhypotheses arediscussed, both of which are being used more and more in practice. These changes enable a one-semester course to cover basic statistical theory with applications. Such a course would cover Chapters 1–4 and, depending on time, parts of Chapter 5. For two-semester courses, this basic understanding of statistical inference will prove quite helpful to students in the later chapters (6–8) on the statistical theory of inference. Another major change is moving the discussion of robustness concepts (influ- ence function and breakdown) of Chapter 12 to the end of Chapter 10. To reflect thismove,the titleofChapter10hasbeenchangedto“NonparametricandRobust Statistics.” This additional material in the new Chapter 10 is essentially the im- portantrobustnessconceptsfoundintheoldChapter12. Further,thesimplelinear modelisdiscussedinChapters9and10. Hence,withthis movewehaveeliminated ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.