ebook img

Introduction to magnetic random-access memory PDF

255 Pages·2017·89.29 MB·English
by  Dieny
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to magnetic random-access memory

INTRODUCTION TO MAGNETIC RANDOM-ACCESS MEMORY IEEEPress 445HoesLane Piscataway,NJ08854 IEEEPressEditorialBoard TariqSamad,EditorinChief GeorgeW.Arnold XiaoouLi RayPerez GiancarloFortino VladimirLumelsky LindaShafer DmitryGoldgof Pui-InMak ZidongWang EkramHossain JeffreyNanzer MengChuZhou INTRODUCTION TO MAGNETIC RANDOM-ACCESS MEMORY Edited by BERNARD DIENY RONALD B. GOLDFARB KYUNG-JIN LEE Copyright2017byTheInstituteofElectricalandElectronicsEngineers,Inc. PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey.Allrightsreserved PublishedsimultaneouslyinCanada Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyform orbyanymeans,electronic,mechanical,photocopying,recording,scanning,orotherwise,exceptas permittedunderSection107or108ofthe1976UnitedStatesCopyrightAct,withouteithertheprior writtenpermissionofthePublisher,orauthorizationthroughpaymentoftheappropriateper-copyfeeto theCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers,MA01923,(978)750-8400, fax(978)750-4470,oronthewebatwww.copyright.com.RequeststothePublisherforpermission shouldbeaddressedtothePermissionsDepartment,JohnWiley&Sons,Inc.,111RiverStreet,Hoboken, NJ07030,(201)748-6011,fax(201)748-6008,oronlineatwww.wiley.com/go/permission. LimitofLiability/DisclaimerofWarranty:Whilethepublisher,editors,andauthorshaveusedtheir besteffortsinpreparingthisbook,theymakenorepresentationsorwarrantieswithrespecttothe accuracyorcompletenessofthecontentsofthisbookandspecificallydisclaimanyimpliedwarrantiesof merchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysales representativesorwrittensalesmaterials.Theadviceandstrategiescontainedhereinmaynotbesuitable foryoursituation.Youshouldconsultwithaprofessionalwhereappropriate.Neitherthepublishernor theeditorsnortheauthorsshallbeliableforanylossofprofitoranyothercommercialdamages, includingbutnotlimitedtospecial,incidental,consequential,orotherdamages. Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontactour CustomerCareDepartmentwithintheUnitedStatesat(800)762-2974,outsidetheUnitedStatesat (317)572-3993orfax(317)572-4002. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmay notbeavailableinelectronicformats.FormoreinformationaboutWileyproducts,visitourwebsiteat www.wiley.com. LibraryofCongressCataloging-in-PublicationDataisavailable. ISBN:978-1-119-00974-0 PrintedintheUnitedStatesofAmerica 10 9 8 7 6 5 4 3 2 1 CONTENTS ABOUTTHEEDITORS xi PREFACE APERSPECTIVEONNONVOLATILEMAGNETIC MEMORYTECHNOLOGY xiii CHAPTER1 BASICSPINTRONICTRANSPORTPHENOMENA 1 NicolasLocatelliandVincentCros 1.1 GiantMagnetoresistance 2 1.1.1 BasicsofElectronicTransportinMagneticMaterials 2 1.1.2 ASimpleModeltoDescribeGMR:The“Two-CurrentModel” 5 1.1.3 DiscoveryofGMRandEarlyGMRDevelopments 7 1.1.4 MainApplicationsofGMR 8 1.2 TunnelingMagnetoresistance 9 1.2.1 BasicsofQuantumMechanicalTunneling 10 1.2.2 FirstApproachtoTunnelMagnetoresistance:Jullière’sModel 11 1.2.3 TheSlonczewskiModel 14 1.2.3.1 TheModel 14 1.2.3.2 ExperimentalObservations 15 1.2.3.3 AbouttheTMRAngularDependence 15 1.2.4 MoreComplexModels:TheSpinFilteringEffect 16 1.2.4.1 IncoherentTunnelingThroughanAmorphous(Al O ) 2 3 Barrier 16 1.2.4.2 CoherentTunnelingThroughaCrystallineMgO Barrier 17 1.2.5 BiasDependenceofTunnelMagnetotransport 19 1.3 TheSpin-TransferPhenomenon 20 1.3.1 TheConceptandOriginoftheSpin-TransferEffect 20 1.3.1.1 The“In-Plane”Torque 20 1.3.1.2 The“Out-of-Plane”Torque 23 1.3.2 Spin-Transfer-InducedMagnetizationDynamics 23 1.3.2.1 ASimpleAnalogy 24 1.3.2.2 TowardMRAMBasedonSpin-TransferTorque 25 1.3.3 MainEventsConcerningSpin-TransferAdvances 26 References 27 CHAPTER2 MAGNETICPROPERTIESOFMATERIALSFORMRAM 29 ShinjiYuasa 2.1 MagneticTunnelJunctionsforMRAM 29 2.2 MagneticMaterialsandMagneticProperties 31 v vi CONTENTS 2.2.1 FerromagnetandAntiferromagnet 31 2.2.2 DemagnetizingFieldandShapeAnisotropy 33 2.2.3 MagnetocrystallineAnisotropy,InterfaceMagneticAnisotropy, andPerpendicularMagneticAnisotropy 35 2.2.4 ExchangeBias 36 2.2.5 InterlayerExchangeCouplingandSynthetic AntiferromagneticStructure 37 2.2.6 Spin-ValveStructure 38 2.3 BasicMaterialsandMagnetotransportProperties 39 2.3.1 MetallicNonmagneticSpacerforGMRSpin-Valve 39 2.3.2 MagneticTunnelJunctionwithAmorphousAlOTunnelBarrier 41 2.3.3 MagneticTunnelJunctionwithCrystallineMgO(001) TunnelBarrier 44 2.3.3.1 EpitaxialMTJwithaSingle-CrystalMgO(001) Barrier 44 2.3.3.2 CoFeB/MgO/CoFeBMTJwitha(001)-TexturedMgO BarrierforDeviceApplications 46 2.3.3.3 DeviceApplicationsofMgO-BasedMTJs 48 References 51 CHAPTER3 MICROMAGNETISMAPPLIEDTOMAGNETICNANOSTRUCTURES 55 LilianaD.Buda-Prejbeanu 3.1 MicromagneticTheory:FromBasicConceptsToward theEquations 55 3.1.1 FreeEnergyofaMagneticSystem 56 3.1.1.1 ExchangeEnergy 56 3.1.1.2 MagnetocrystallineAnisotropyEnergy 57 3.1.1.3 DemagnetizingEnergy 57 3.1.1.4 ZeemanEnergy 60 3.1.2 MagneticallyStableStateandEquilibriumEquations 61 3.1.3 EquationsofMagnetizationMotion 62 3.1.4 LengthScalesinMicromagnetism 63 3.1.5 ModificationRelatedtoSpin-TransferTorquePhenomenaand Spin–OrbitCoupling 64 3.1.6 ThermalFluctuations 65 3.1.7 NumericalMicromagnetism 66 3.2 MicromagneticConfigurationsinMagneticCircularDots 67 3.3 STT-InducedMagnetizationSwitching:ComparisonofMacrospinand Micromagnetism 70 3.4 ExampleofMagnetizationPrecessionalSTTSwitching:RoleofDipolar Coupling 73 References 76 CHAPTER4 MAGNETIZATIONDYNAMICS 79 WilliamE.Bailey 4.1 Landau–Lifshitz–GilbertEquation 79 4.1.1 Introduction 79 4.1.2 VariablesintheEquation 80 CONTENTS vii 4.1.3 TheEquation 81 4.1.3.1 PrecessionalTerm 82 4.1.3.2 RelaxationTerm 83 4.2 Small-AngleMagnetizationDynamics 84 4.2.1 LLGforThin-Film,MagnetizedinPlane,SmallAngles 84 4.2.2 FerromagneticResonance 85 4.2.3 TabulatedMaterialsParameters 87 4.2.3.1 BulkValues 87 4.2.3.2 Finite-SizeEffects 88 4.2.4 PulsedMagnetizationDynamics 89 4.3 Large-AngleDynamics:Switching 90 4.3.1 QuasistaticLimit:Stoner–WohlfarthModel 90 4.3.2 ThermallyActivatedSwitching 93 4.3.3 SwitchingTrajectory 94 4.4 MagnetizationSwitchingbySpin-Transfer 95 4.4.1 AdditionalTermstotheLLG 95 4.4.2 Full-AngleLLGwithSpin-Torque 96 Acknowledgments 97 References 97 CHAPTER5 MAGNETICRANDOM-ACCESSMEMORY 101 BernardDienyandI.LucianPrejbeanu 5.1 IntroductiontoMagneticRandom-AccessMemory(MRAM) 101 5.1.1 HistoricalPerspective 101 5.1.2 VariousCategoriesofMRAM 102 5.2 StorageFunction:MRAMRetention 104 5.2.1 KeyRoleoftheThermalStabilityFactor 104 5.2.2 ThermalStabilityFactorforIn-PlaneandOut-of-Plane MagnetizedStorageLayer 106 5.3 ReadFunction 110 5.3.1 PrincipleofReadOperation 110 5.3.2 STT-InducedDisturbanceoftheStorageLayerMagneticState DuringRead 111 5.4 Field-WrittenMRAM(FIMS-MRAM) 112 5.4.1 Stoner–WohlfarthMRAM 112 5.4.2 ToggleMRAM 115 5.4.2.1 ToggleWritePrinciple 115 5.4.2.2 ImprovedWriteMargin 117 5.4.2.3 ApplicationsofToggleMRAM 117 5.4.3 LimitationinDownsizeScalability 118 5.5 Spin-TransferTorqueMRAM(STT-MRAM) 118 5.5.1 PrincipleofSTTWriting 119 5.5.2 ConsiderationsofBreakdown,Write,ReadVoltage Distributions 122 5.5.3 InfluenceofSTTWritePulseDuration 123 5.5.4 In-PlaneSTT-MRAM 124 5.5.4.1 CriticalCurrentforSwitching 124 5.5.4.2 MinimizationofCriticalCurrentforWriting 125 5.5.5 Out-of-PlaneSTT-MRAM 128 viii CONTENTS 5.5.5.1 BenefitofOut-of-PlaneConfigurationinTermsof WriteCurrent 130 5.5.5.2 Trade-offBetweenStrongPerpendicularAnisotropy andLowGilbertDamping 131 5.5.5.3 BenefitfromMagneticMetal/OxidePerpendicular Anisotropy 131 5.5.5.4 DownsizeScalabilityofPerpendicularSTT-MRAM 133 5.6 Thermally-AssistedMRAM(TA-MRAM) 135 5.6.1 Trade-offBetweenRetentionandWritability;GeneralIdea ofThermally-AssistedWriting 135 5.6.2 Self-HeatinginMTJDuetoHigh-DensityTunnelingCurrent 136 5.6.3 In-PlaneTA-MRAM 136 5.6.3.1 WriteSelectivityDuetoaCombinationofHeating andField 136 5.6.3.2 ReducedPowerConsumption,ThankstoLow WriteFieldandFieldSharing 138 5.6.4 TA-MRAMwithSoftReference:MagneticLogic Unit(MLU) 140 5.6.4.1 PrincipleofReadingwithSoftReference 141 5.6.4.2 Content-AddressableMemory 143 5.6.5 Thermally-AssistedSTT-MRAM 144 5.6.5.1 In-PlaneSTTPlusTA-MRAM 144 5.6.5.2 Out-of-PlaneSTTPlusTA-MRAM 145 5.7 Three-TerminalMRAMDevices 150 5.7.1 FieldversusCurrent-InducedDomainWall Propagation 150 5.7.2 PrincipleofWriting 152 5.7.3 AdvantagesandDrawbacksofThree-TerminalDevices 153 5.8 ComparisonofMRAMwithOtherNonvolatileMemory Technologies 153 5.8.1 MRAMintheInternationalTechnologyRoadmapfor Semiconductors(ITRS) 153 5.8.2 ComparisonofMRAMandRedox-RAM 155 5.8.3 MainApplicationsofMRAM 155 5.9 Conclusion 157 Acknowledgments 157 References 158 CHAPTER6 MAGNETICBACK-ENDTECHNOLOGY 165 MichaelC.Gaidis 6.1 MagnetoresistiveRandom-AccessMemory(MRAM)Basics 165 6.2 MRAMBack-End-of-LineStructures 166 6.2.1 Field-MRAM 166 6.2.2 Spin-TransferTorque(STT)MRAM 168 6.2.3 OtherMagneticMemoryDeviceStructures 169 6.3 MRAMProcessIntegration 169 6.3.1 TheMagneticTunnelJunction 169 6.3.1.1 SubstratePreparation 171 6.3.1.2 FilmDepositionandAnneal 172 CONTENTS ix 6.3.1.3 DevicePatterning 174 6.3.1.4 DielectricEncapsulation 179 6.3.2 WiringandPackaging 183 6.3.2.1 FerromagneticCladding 184 6.3.2.2 Packaging 186 6.3.3 ProcessingCostConsiderations 186 6.4 ProcessCharacterization 187 6.4.1 200–300mmWaferBlanketMagneticFilms 187 6.4.1.1 Current-in-PlaneTunneling(CIPT) 188 6.4.1.2 KerrMagnetometry 189 6.4.2 ParametricTestofIntegratedMagneticDevices 189 6.4.2.1 MagnetoresistanceversusResistanceandResistance versusReciprocalArea 190 6.4.2.2 BreakdownVoltage 192 6.4.2.3 DeviceSpreads 194 Acknowledgments 195 References 195 CHAPTER7 BEYONDMRAM:NONVOLATILELOGIC-IN-MEMORYVLSI 199 TakahiroHanyu,TetsuoEndoh,ShojiIkeda,TadahikoSugibayashi, NaokiKasai,DaisukeSuzuki,MasanoriNatsui,HirokiKoike,andHideoOhno 7.1 Introduction 199 7.1.1 MemoryHierarchyofElectronicSystems 199 7.1.2 CurrentLogicVLSI:TheChallenge 201 7.2 NonvolatileLogic-in-MemoryArchitecture 203 7.2.1 NonvolatileLogic-in-MemoryArchitectureUsingMagnetic Flip-Flops 205 7.2.2 NonvolatileLogic-in-MemoryArchitectureUsingMTJDevicesin CombinationwithCMOSCircuits 207 7.3 CircuitSchemeforLogic-in-MemoryArchitectureBasedonMagnetic Flip-FlopCircuits 209 7.3.1 MagneticFlip-FlopCircuit 209 7.3.2 M-Latch 211 7.4 NonvolatileFullAdderUsingMTJDevicesinCombination withMOSTransistors 214 7.5 Content-AddressableMemory 217 7.5.1 NonvolatileContent-AddressableMemory 217 7.5.2 NonvolatileTernaryCAMUsingMTJDevicesinCombination withMOSTransistors 220 7.6 MTJ-basedNonvolatileField-ProgrammableGateArray 224 References 227 APPENDIX UNITSFORMAGNETICPROPERTIES 231 INDEX 233

Description:
Magnetic random-access memory (MRAM) is poised to replace traditional computer memory based on complementary metal-oxide semiconductors (CMOS). MRAM will surpass all other types of memory devices in terms of nonvolatility, low energy dissipation, fast switching speed, radiation hardness, and durabil
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.