ebook img

Introduction to Isotopic Materials Science PDF

298 Pages·2018·12.972 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to Isotopic Materials Science

Springer Series in Materials Science 248 Vladimir G. Plekhanov Introduction to Isotopic Materials Science Springer Series in Materials Science Volume 248 Series editors Robert Hull, Troy, USA Chennupati Jagadish, Canberra, Australia Yoshiyuki Kawazoe, Sendai, Japan Richard M. Osgood, New York, USA Jürgen Parisi, Oldenburg, Germany Udo W. Pohl, Berlin, Germany Tae-Yeon Seong, Seoul, Republic of Korea (South Korea) Shin-ichi Uchida, Tokyo, Japan Zhiming M. Wang, Chengdu, China TheSpringerSeriesinMaterialsSciencecoversthecompletespectrumofmaterials physics,includingfundamentalprinciples,physicalproperties,materialstheoryand design.Recognizingtheincreasingimportanceofmaterialsscienceinfuturedevice technologies, the book titles in this series reflect the state-of-the-art in understand- ingandcontrollingthestructureandpropertiesofallimportantclassesofmaterials. More information about this series at http://www.springer.com/series/856 Vladimir G. Plekhanov Introduction to Isotopic Materials Science 123 Vladimir G.Plekhanov Mathematics andPhysics Department Computer Science College Tallinn, Estonia ISSN 0933-033X ISSN 2196-2812 (electronic) SpringerSeries inMaterials Science ISBN978-3-319-42260-2 ISBN978-3-319-42261-9 (eBook) https://doi.org/10.1007/978-3-319-42261-9 LibraryofCongressControlNumber:2016960025 ©SpringerNatureSwitzerlandAG2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface This book describes new trends in the nanoscience of isotopic materials science. Assuming a background in graduate condensed matter physics and covering the fundamentalaspectsofisotopicmaterialssciencefromtheverybeginning,itequips readers to engage inhigh-level professional research inthis area. The book’s main objective is to share in the question of why solids are the way they are, either becauseofhowtheiratomsarebondedwithoneanother,becauseofdefectsintheir structure, or because of how they are produced or processed. Accordingly, it explores the science of how atoms interact, connects the results to real materials properties, and demonstrates the engineering concepts that can be used to produce or improve semiconductors by design. In addition, it shows how the concepts discussed are applied in the laboratory. The book addresses the needs of researchers, graduate students, and senior undergraduate students alike. Although primarily written for a materials science audience,itwillbeequallyusefultothoseteachingelectricalengineering,materials science,orevenchemicalengineeringorphysicscurricula.Inordertomaintainthe focusonmaterialsconcepts,thedetailsofmanyofthederivationsandequationsare leftoutofthebook.Similarly,theauthordoesnotdelveintothedetailsofelectrical engineering topics in as much detail as an electrical engineer might wish. It is assumed that readers have a basic command of these topics. Tallinn, Estonia Vladimir G. Plekhanov v Acknowledgements The list of acknowledgements has to be necessarily long since the author has received a great amount of help from many person. I owe all of them a great deal and I would like to express my sincere grateful to each one. Most of them appear explicitly as authors in the references. Nevertheless, first of all I would like to acknowledgeProf.F.F.Gavrilov,whofirstintroducedtheauthorinthephysicsof isotopes. Thank you very much Prof. G. I. Pilipenko for a very long and warm collaboration.Ideeplythanktheauthorsandpublisherswhohavekindlypermitted ustoreproducefiguresandtablesfromtheirpapersandbooks.InafewcasesIhave been unable to contact the authors, and I would be grateful if they would never- theless retrospectively give me the necessary permission. Again it is a pleasure to thank the staff of Springer, in particular Dr. C. Ascheron and Elke Sauer, for continued excellent cooperation. Many thanks are due to Prof. D. Reder for care- fully reading my manuscript. I also would like to acknowledge Dr. D. Jonson for his helpin improving theEnglish style of the mymanuscript and Mr. R. Ermakov for technical assistants. It is very pity that Estonia State has never supported my scientificinvestigations.Iwishtoexpressmydeepgratitudekidsandgrandchildren for their patience during the time preparation of this book. Tallinn, Estonia Vladimir G. Plekhanov vii Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Energy Band Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Electronic Band Structure of Bulk Samples . . . . . . . . . . . . . . . . 5 2.1.1 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 Energy Band Structure . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Density of States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Effective Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 Optical Properties of Isotope-Mixed Substances . . . . . . . . . . . . . 16 2.4.1 Isotope Renormalization of the Fundamental Gap’s Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4.2 Exciton Emission Spectra . . . . . . . . . . . . . . . . . . . . . . . 23 2.5 Electron Excitations in Low-Dimensional Structures. . . . . . . . . . 28 2.5.1 Wavelike Properties of Electrons. . . . . . . . . . . . . . . . . . 28 2.5.2 Dimensionality and Density of States . . . . . . . . . . . . . . 32 2.5.3 Electron in Quantum Dot . . . . . . . . . . . . . . . . . . . . . . . 35 2.6 Excitons in Nanostructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.6.1 Excitons in Quantum Wells . . . . . . . . . . . . . . . . . . . . . 38 2.7 Biexcitons in Quantum Dots . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3 Phonon States in Bulk and Low-Dimensional Structures . . . . . . . . . 53 3.1 Hamiltonian of Perfect Crystals. . . . . . . . . . . . . . . . . . . . . . . . . 53 3.2 The Adiabatic and Harmonic Approximations . . . . . . . . . . . . . . 55 3.3 The Anharmonic Crystal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.4 Disordered Crystals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.4.1 Model of Virtual Crystal Approximation . . . . . . . . . . . . 65 3.4.2 Model of Coherent Potential Approximation . . . . . . . . . 66 3.5 The Dispersion Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 ix x Contents 3.6 Measurement of Phonon Dispersion by the Method of Inelastic Neutron Scattering. . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.6.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.7 Raman Spectra of Isotope-Mixed Crystals . . . . . . . . . . . . . . . . . 84 3.8 Disorder Shift and Broadening of the Line in the Raman Spectra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 3.9 Vibrations in Low-Dimensional Structures . . . . . . . . . . . . . . . . . 99 3.9.1 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 3.9.2 Elastic Continuum Model of Phonons . . . . . . . . . . . . . . 101 3.9.3 Dielectric Continuum Model of Phonons. . . . . . . . . . . . 103 3.10 Optical and Acoustic Phonons in Nanostructures . . . . . . . . . . . . 105 3.11 Experimental Manifestation of Phonons in Low-Dimensional Structures of Different Kinds. . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3.11.1 Electron–Phonon Interaction in Low-Dimensional Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 3.11.2 Exciton–Phonon Interaction in Low-Dimensional Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 4 Application of Isotopic Materials Science in Bulk and Low-Dimensional Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 4.1 General Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 4.2 Nonlinear Excitons in Bulk Isotope-Mixed Materials . . . . . . . . . 142 4.2.1 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 4.2.2 Free-Exciton Emission from Diamond at Room Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 4.2.3 UV Emission from a Diamond p–n Junction . . . . . . . . . 146 4.3 Exciton Lasing in LiHxD1(cid:1)x Crystals. . . . . . . . . . . . . . . . . . . . . 149 4.4 Phonon-Related Isotope Effects . . . . . . . . . . . . . . . . . . . . . . . . . 156 4.4.1 Isotope Dependence of the Thermal Expansion Coefficient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 4.4.2 Effect of the Isotope Composition of a Crystal Lattice on the Specific Heat . . . . . . . . . . . . . . . . . . . . . 165 4.4.3 Dependence of Thermal Conductivity on the Isotope Composition of Materials . . . . . . . . . . . . . . . . . . . . . . . 172 4.4.4 Influence of the Isotope Composition Materials on the Lattice Constant. . . . . . . . . . . . . . . . . . . . . . . . . 179 4.4.5 Isotopic Fiber Optics . . . . . . . . . . . . . . . . . . . . . . . . . . 189 4.5 Isotope-Mixed Graphene and Its Application . . . . . . . . . . . . . . . 194 4.6 Chemical Mechanisms Bandgap Engineering in Graphene. . . . . . 205 Contents xi 4.7 Low-Dimensional Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 4.7.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 4.7.2 Resonant-Tunneling Diodes . . . . . . . . . . . . . . . . . . . . . 217 4.7.3 Field-Effect Transistor . . . . . . . . . . . . . . . . . . . . . . . . . 219 4.7.4 Single-Electron Transistor. . . . . . . . . . . . . . . . . . . . . . . 221 4.7.5 Graphene Quantum Dots Electronics . . . . . . . . . . . . . . . 226 4.7.6 Light-Emitting Diodes and Lasers . . . . . . . . . . . . . . . . . 229 4.7.7 Radiation Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 4.8 Isotope-Based Quantum Computers . . . . . . . . . . . . . . . . . . . . . . 239 4.8.1 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 4.8.2 Current Status: The Di Vincenzo Criteria. . . . . . . . . . . . 240 4.8.3 Elementary Gates for Quantum Computation . . . . . . . . . 242 4.8.4 A Physical Models for a Quantum Computer. . . . . . . . . 251 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 Index .... .... .... .... .... ..... .... .... .... .... .... ..... .... 279

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.