ebook img

Introduction to Integral Calculus: Systematic Studies with Engineering Applications for Beginners PDF

415 Pages·2012·3.81 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to Integral Calculus: Systematic Studies with Engineering Applications for Beginners

INTRODUCTION TO INTEGRAL CALCULUS INTRODUCTION TO INTEGRAL CALCULUS Systematic Studies with Engineering Applications for Beginners Ulrich L. Rohde Prof. Dr.-Ing.Dr. h.c. mult. BTU Cottbus, Germany Synergy MicrowaveCorporation Peterson,NJ,USA G. C. Jain (Retd. Scientist) Defense Research andDevelopmentOrganization Maharashtra,India Ajay K. Poddar Chief Scientist,Synergy MicrowaveCorporation, Peterson, NJ, USA A. K. Ghosh Professor, Department ofAerospace Engineering Indian Institute ofTechnology – Kanpur Kanpur, India Copyright(cid:2)2012byJohnWiley&Sons,Inc.Allrightsreserved PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey PublishedsimultaneouslyinCanada Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinany formorbyanymeans,electronic,mechanical,photocopying,recording,scanning,orotherwise, exceptaspermittedunderSection107or108ofthe1976UnitedStatesCopyrightAct,withouteither thepriorwrittenpermissionofthePublisher,orauthorizationthroughpaymentoftheappropriate per-copyfeetotheCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers,MA01923, (978)750-8400,fax(978)750-4470,oronthewebatwww.copyright.com.RequeststothePublisher forpermissionshouldbeaddressedtothePermissionsDepartment,JohnWiley&Sons,Inc.,111 RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201)748-6008,oronline athttp://www.wiley.com/go/permission. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbestefforts inpreparingthisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyor completenessofthecontentsofthisbookandspecificallydisclaimanyimpliedwarrantiesof merchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysales representativesorwrittensalesmaterials.Theadviceandstrategiescontainedhereinmaynotbe suitableforyoursituation.Youshouldconsultwithaprofessionalwhereappropriate.Neitherthe publishernorauthorshallbeliableforanylossofprofitoranyothercommercialdamages,including butnotlimitedtospecial,incidental,consequential,orotherdamages. Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontactour CustomerCareDepartmentwithintheUnitedStatesat(800)762-2974,outsidetheUnitedStatesat (317)572-3993orfax(317)572-4002. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprint maynotbeavailableinelectronicformats.FormoreinformationaboutWileyproducts,visitour websiteatwww.wiley.com. LibraryofCongressCataloging-in-PublicationData: IntroductiontointegralCalculus:systematicstudieswithengineeringapplicationsforbeginners/ UlrichL.Rohde. p.cm. Includesbibliographicalreferencesandindex. ISBN978-1-118-11776-7(cloth) 1.Calculus,Integral–Textbooks.I.Rohde,UlrichL. QA308.I582012 515’.43–dc23 2011018422 PrintedintheUnitedStatesofAmerica 10 9 8 7 6 5 4 3 2 1 CONTENTS FOREWORD ix PREFACE xiii BIOGRAPHIES xxi INTRODUCTION xxiii ACKNOWLEDGMENT xxv 1 Antiderivative(s)[orIndefiniteIntegral(s)] 1 1.1 Introduction 1 1.2 UsefulSymbols,Terms,andPhrasesFrequentlyNeeded 6 1.3 Table(s)ofDerivativesandtheircorrespondingIntegrals 7 1.4 IntegrationofCertainCombinationsofFunctions 10 1.5 ComparisonBetweentheOperationsofDifferentiationandIntegration 15 2 IntegrationUsingTrigonometricIdentities 17 2.1 Introduction 17 2.2 SomeImportantIntegrÐalsInvolvingsinxandcosx 34 2.3 IntegralsoftheForm ðdx=ðasinxþbcosxÞÞ,wherea,b2r 37 3a IntegrationbySubstitution:ChangeofVariableofIntegration 43 3a.1 Introduction 43 3a.2 GeneralizedPowerRule 43 ð 3a.3 Theorem asinxþbcosx 46 3a.4 ToEvaluateIntegralsoftheForm dx; csinxþdcosx wherea,b,c,anddareconstant 60 3b FurtherIntegrationbySubstitution:AdditionalStandardIntegrals 67 3b.1 Introduction 67 3b.2 SpecialCasesofIntegralsandProofforStandardIntegrals 68 3b.3 SomeNewIntegrals 84 3b.4 FourMoreStandardIntegrals 85 4a IntegrationbyParts 97 4a.1 Introduction 97 4a.2 ObtainingtheRuleforIntegrationbyParts 98 v vi CONTENTS 4a.3 HelpfulPicturesConnectingInverseTrigonometricFunctions withOrdinaryTrigonometricFunctions 113 4a.4 RuleforProperChoiceofFirstFunction 115 4b FurtherIntegrationbyParts:WheretheGivenIntegral ReappearsonRight-HandSide 117 4b.1 Introduction 117 4b.2 AnImportantResult:ACorollarytoIntegrationbyParts 120 4b.3 ApplicationoftheCorollarytoIntegrationbyPartsto IntegralsthatcannotbeSolvedOtherwise 124 4b.4 SimplerMethÐopd(ffiffisffiffi)ffiffiffifffioffiffiffirffiffiffiEffiffiffivffiffiaffiffilffiffiuffiffiatingStandardIntegrals 126 4b.5 ToEvaluate ax2þbxþcdx 133 5 PreparationfortheDefiniteIntegral:TheConceptofArea 139 5.1 Introduction 139 5.2 PreparationfortheDefiniteIntegral 140 5.3 TheDefiniteIntegralasanArea 143 5.4 DefinitionofAreainTermsoftheDefiniteIntegral 151 5.5 RiemannSumsandtheAnalyticalDefinition oftheDefiniteIntegral 151 6a TheFundamentalTheoremsofCalculus 165 6a.1 Introduction 165 6a.2 DefiniteIntegrals 165 6a.3 TheAreaofFunctionA(x) 167 6a.4 StatementandProofoftheSecondFundamental TheoremofCalculus 171 6a.5 DifferentiatingaDefiniteIntegralwithRespectto aVariableUpperLimit 172 Ð 6b TheIntegralFunction x1dt,(x>0)Identifiedaslnxorlog x 183 1 t e 6b.1 Introduction 183 6b.2 DefinitionofNaturalLogarithmicFunction 186 6b.3 TheCalculusoflnx 187 6b.4 TheGraphoftheNaturalLogarithmicFunctionlnx 194 6b.5 TheNaturalExponentialFunction[exp(x)orex] 196 7a MethodsforEvaluatingDefiniteIntegrals 197 7a.1 Introduction 197 7a.2 TheRuleforEvaluatingDefiniteIntegrals 198 7a.3 SomeRules(Theorems)forEvaluationofDefiniteIntegrals 200 7a.4 MethodofIntegrationbyPartsinDefiniteIntegrals 209 7b SomeImportantPropertiesofDefiniteIntegrals 213 7b.1 Introduction 213 7b.2 SomeImportantPropertiesofDefiniteIntegrals 213 CONTENTS vii 7b.3 ProofofProperty(P ) 214 0 7b.4 ProofofProperty(P ) 228 5 7b.5 DefiniteIntegrals:TypesofFunctions 232 8a ApplyingtheDefiniteIntegraltoComputetheArea ofaPlaneFigure 249 8a.1 Introduction 249 8a.2 ComputingtheAreaofaPlaneRegion 252 8a.3 ConstructingtheRoughSketch[CartesianCurves] 257 8a.4 ComputingtheAreaofaCircle(DevelopingSimplerTechniques) 272 8b ToFindLength(s)ofArc(s)ofCurve(s),theVolume(s)ofSolid(s) ofRevolution,andtheArea(s)ofSurface(s)ofSolid(s)ofRevolution 295 8b.1 Introduction 295 8b.2 MethodsofIntegration 295 8b.3 EquationfortheLengthofaCurveinPolarCoordinates 300 8b.4 SolidsofRevolution 302 8b.5 FormulafortheVolumeofa“SolidofRevolution” 303 8b.6 Area(s)ofSurface(s)ofRevolution 314 9a DifferentialEquations:RelatedConceptsandTerminology 321 9a.1 Introduction 321 9a.2 ImportantFormalApplicationsofDifferentials(dyanddx) 323 9a.3 IndependentArbitraryConstants(orEssentialArbitraryConstants) 331 9a.4 Definition:IntegralCurve 332 9a.5 FormationofaDifferentialEquationfromaGivenRelation, InvolvingVariablesandtheEssentialArbitraryConstants (orParameters) 333 9a.6 GeneralProcedureforEliminating“Two”Independent ArbitraryConstants(UsingtheConceptofDeterminant) 338 9a.7 TheSimplestTypeofDifferentialEquations 357 9b MethodsofSolvingOrdinaryDifferentialEquations oftheFirstOrderandoftheFirstDegree 361 9b.1 Introduction 361 9b.2 MethodsofSolvingDifferentialEquations 362 9b.3 LinearDifferentialEquations 388 9b.4 TypeIII:ExactDifferentialEquations 397 9b.5 ApplicationsofDifferentialEquations 398 INDEX 399 FOREWORD “What is Calculus?” is a classic deep question. Calculus is the most powerful branch of mathematics,whichrevolvesaroundcalculationsinvolvingvaryingquantities.Itprovidesa systemofrulestocalculatequantitieswhichcannotbecalculatedbyapplyinganyotherbranch ofmathematics.Schoolsorcollegesfinditdifficulttomotivatestudentstolearnthissubject, whilethosewhodotakethecoursefinditverymechanical.Manyatimes,ithasbeenobserved that students incorrectly solve real-life problems by applying Calculus. They may not be capable to understand or admit their shortcomings in terms of basic understanding of fundamental concepts! The study of Calculus is one of the most powerful intellectual achievements of the human brain. One important goal of this manuscript is to give begin- ner-levelstudentsanappreciationofthebeautyofCalculus.Whethertaughtinatraditional lecture format or in the lab with individual or group learning, Calculus needs focusing on numericalandgraphicalexperimentation.Thismeansthattheideasandtechniqueshavetobe presentedclearlyandaccuratelyinanarticulatedmanner. TheideasrelatedwiththedevelopmentofCalculusappearthroughoutmathematicalhistory, spanning over more than 2000 years. However, the credit of its invention goes to the mathematiciansoftheseventeenthcentury(inparticular,toNewtonandLeibniz)andcontinues uptothenineteenthcentury,whenFrenchmathematicianAugustin-LouisCauchy(1789–1857) gave the definition of the limit, a concept which removed doubts about the soundness of Calculus,andmadeitfreefromallconfusion.ThehistoryofcontroversyaboutCalculusismost illuminatingastothegrowthofmathematics.ThesoundnessofCalculuswasdoubtedbythe greatestmathematiciansoftheeighteenthcentury,yet,itwasnotonlyappliedfreelybutgreat developments like differential equations, differential geometry, and so on were achieved. Calculus,whichistheoutcomeofanintellectualstruggleforsuchalongperiodoftime,has provedtobethemostbeautifulintellectualachievementofthehumanmind. Therearecertainproblemsinmathematics,mechanics,physics,andmanyotherbranchesof science,whichcannotbesolvedbyordinarymethodsofgeometryoralgebraalone.Tosolve theseproblems,wehavetouseanewbranchofmathematics,knownasCalculus.Itusesnot onlytheideasandmethodsfromarithmetic,geometry,algebra,coordinategeometry,trigo- nometry,andsoon,butalsothenotionoflimit,whichisanewideawhichliesatthefoundation ofCalculus.Usingthisnotionasatool,thederivativeofafunction(whichisavariablequantity) isdefinedasthelimitofaparticularkind.Ingeneral,DifferentialCalculusprovidesamethod forcalculating“therateofchange”ofthevalueofthevariablequantity.Ontheotherhand, IntegralCalculusprovidesmethodsforcalculatingthetotaleffectofsuchchanges,underthe given conditions. The phrase rate of change mentioned above stands for the actual rate of changeofavariable,andnotitsaveragerateofchange.Thephrase“rateofchange”mightlook likeaforeignlanguagetobeginners,butconceptslikerateofchange,stationarypoint,androot, andsoon,haveprecisemathematicalmeaning,agreed-uponallovertheworld.Understanding suchwordshelpsalotinunderstandingthemathematicstheyconvey.Atthisstage,itmustalso ix x FOREWORD bemadeclearthatwhereasalgebra,geometry,andtrigonometryarethetoolswhichareusedin thestudyofCalculus,theyshouldnotbeconfusedwiththesubjectofCalculus. ThismanuscriptistheresultofjointeffortsbyProf.UlrichL.Rohde,Mr.G.C.Jain,Dr.Ajay K.Poddar,andmyself.Allofusareawareofthepracticaldifficultiesofthestudentsfacewhile learningCalculus.Iamoftheopinionthatwiththeavailabilityofthesenotes,studentsshouldbe abletolearnthesubjecteasilyandenjoyitsbeautyandpower.Infact,forwantofsuchsimple andsystematicwork,moststudentsarelearningthesubjectasasetofrulesandformulas,which isreallyunfortunate.Iwishtodiscouragethistrend. ProfessorUlrichL.Rohde,FacultyofMechanical,ElectricalandIndustrialEngineering (RFand Microwave Circuit Design & Techniques) BrandenburgUniversityof Technology, Cottbus,Germanyhasoptimizedthisbookbyexpandingit,addingusefulapplications,and adaptingitfortoday’sneeds.PartsofthemathematicalapproachfromtheRohde,Poddar,and B€oeck textbook on wireless oscillators (The Design of Modern Microwave Oscillators for WirelessApplications:TheoryandOptimization,JohnWiley&Sons,ISBN0-471-72342-8, 2005)wereusedastheycombinedifferentiationandintegrationtocalculatethedampedand startingoscillationconditionusingsimpledifferentialequations.Thisisagoodtransitionfor morechallengingtasksforscientificstudieswithengineeringapplicationsforbeginnerswho finddifficultiesinunderstandingtheproblem-solvingpowerofCalculus. Mr.Jainisnotateacherbyprofession,buthiscuriositytogototherootsofthesubjectto prepare the so-called concept-oriented notes for systematic studies in Calculus is his contribution toward creating interest among students for learning mathematics in general, andCalculusinparticular.Thisbookstartedwiththeseconcept-orientednotespreparedfor teachingstudentstofacereal-lifeengineeringproblems.Mostofthematerialpertainingtothis manuscriptoncalculuswaspreparedbyMr.G.C.Jainintheprocessofteachinghiskidsand helpingotherstudentswhoneededhelpinlearningthesubject.Lateron,hisfriends(including me)realizedthebeautyofhiscompilationandwewantedtoseehisusefulworkpublished. IamalsoawarethatMr.JaingothisnotesexaminedfromsomeprofessorsattheDepartment of Mathematics, Pune University, India. I know Mr. Jain right from his scientific career at ArmamentResearchandDevelopmentEstablishment(ARDE)atPashan,Pune,India,whereI wasaSeniorScientist(1982–1998)andheadedtheAerodynamicGroupARDE,PuneinDRDO (DefenseResearchandDevelopmentOrganization),India.Coincidently,Dr.AjayK.Poddar, Chief Scientist at Synergy Microwave Corp., NJ 07504, USAwas also a Senior Scientist (1990–2001)inaveryresponsiblepositionintheFuzeDivisionofARDEandwasawareofthe aptitudeofMr.Jain. Dr. Ajay K. Poddar has been the main driving force towards the realization of the conceptualizednotespreparedbyMr.Jaininmanuscriptformandhissincereeffortsmade timelypublicationpossible.Dr.Poddarhasmadetirelesseffortbyextendingallpossiblehelpto ensure that Mr. Jain’s notes are published for the benefit of the students. His contributions include(butarenotlimitedto)valuableinputsandsuggestionsthroughoutthepreparationof thismanuscriptforitsimprovement,aswellasmanyrelevantliteratureacquisitions.Iamsure, as a leading scientist, Dr. Poddar will have realized how important it is for the younger generationtoavoidshortcomingsintermsofbasicunderstandingofthefundamentalconcepts ofCalculus. I have had a long time association with Mr. Jain and Dr. Poddar at ARDE, Pune. My objectivehasbeentoproofreadthemanuscriptandhighlightitssalientfeatures.However,only apersonalexaminationofthebookwillconveytothereaderthebroadscopeofitscoverageand itscontributioninaddressingtheproperwayoflearningCalculus.Ihopethisbookwillproveto beveryusefultothestudentsofJuniorCollegesandtothoseinhigherclasses(ofscienceand engineeringstreams)whomightneedittogetridofconfusions,ifany. FOREWORD xi MyspecialthanksgoestoDr.Poddar,whoisnotonlyagiftedscientistbuthasalsobeena mentor.Itwashissuggestiontopublishthemanuscriptintwoparts(PartI:Introductionto Differential Calculus: Systematic Studies with Engineering Applications for Beginners and PartII:IntroductiontoIntegralCalculus:SystematicStudieswithEngineeringApplicationsfor Beginners)sothatbeginnerscoulddigesttheconceptsofDifferentialandIntegralCalculus without confusion and misunderstanding. It is the purpose of this book to provide a clear understandingoftheconceptsneededbybeginnersandengineerswhoareinterestedinthe applicationofCalculusoftheirfieldofstudy.Thisbookhasbeendesignedasasupplementtoall current standard textbooks on Calculus and each chapter begins with a clear statement of pertinentdefinitions,principles,andtheoremstogetherwithillustrativeandotherdescriptive material.Considerablymorematerialhasbeenincludedherethancanbecoveredinmosthigh schoolsandundergraduatestudycourses.Thishasbeendonetomakethebookmoreflexible;to provide concept-oriented notes and stimulate interest in the relevant topics. I believe that studentslearnbestwhenproceduraltechniquesarelaidoutasclearlyandsimplyaspossible. Consistentwiththereader’sneedsandforcompleteness,therearealargenumberofexamples forself-practice. TheauthorsaretobecommendedfortheireffortsinthisendeavorandIamsurethatboth PartIandPartIIwillbeanassettothebeginner’shandbookonthebookshelf.Ihopethatafter reading this book, the students will begin to share the enthusiasm of the authors in under- standingandapplyingtheprinciplesofCalculusanditsusefulness.Withallthesechanges,the authors have not compromised our belief that the fundamental goal of Calculus is to help preparebeginnersentertheworldofmathematics,science,andengineering. Finally, I would like to thank Susanne Steitz-Filler, Editor (Mathematics and Statistics) atJohnWiley&Sons,Inc.,DanielleLacourciere,SeniorProductionEditorat JohnWiley& Sons, Inc., and Sanchari S. at Thomosn Digital for her patience and splendid cooperation throughoutthejourneyofthispublication. AJOYKANTIGHOSH PROFESSOR&FACULTYINCHARGE(FLIGHTLABORATORY) DEPARTMENTOFAEROSPACEENGINEERING IITKANPUR,INDIA

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.