Introduction to Energy Technologies for Efficient Power Generation • • • • • Alexander V. Dimitrov Introduction to Energy Technologies for Eficient Power Generation Nature seeks and inds transition from less to more probable states Ludwig Botzmann The book was written based on a series of lectures as part of an academic course on “Heat technics and Power engineering.” It is structured as to cover the horarium of 45 hours of a teaching plan and it comprises six modules • Theoretical basis of energy conversions and thermodynamics • Thermal motors (thermal engines) • Thermal-power energy technologies • Regeneration and recuperation of waste energy • Energy transfer and accumulation • Energy and indoor conditions Alexander V. Dimitrov Introduction to Energy Technologies for Eficient Power Generation Alexander V. Dimitrov CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2017 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper International Standard Book Number-13: 978-1-4987-9644-6 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including pho- tocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Dan- vers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Names: Dimitrov, Aleksandŭr Vasilev, author. Title: Introduction to energy technologies for efficient power generation/ Alexander V. Dimitrov. Description: Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, [2017] | Includes bibliographical references and index. Identifiers: LCCN 2016038520| ISBN 9781498796446 (hardback : alk. paper) | ISBN 9781498796453 (ebook) Subjects: LCSH: Electric power production--Energy conservation. | Electric utilities--Energy conservation. | Energy consumption. Classification: LCC TK1005 .D56 2017 | DDC 621.31/21--dc23 LC record available at https://lccn.loc.gov/2016038520 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Contents List of Figures .................................................................................................................................ix List of Tables ................................................................................................................................xxi Acknowledgments ....................................................................................................................xxiii Author ..........................................................................................................................................xxv Abbreviations ...........................................................................................................................xxvii Introduction ...............................................................................................................................xxix 1. Theoretical Foundations of Energy Conversions and Thermodynamics ...................1 1.1 Energy, Energy Conversion, and Generalized Work ...............................................1 1.1.1 Introduction ......................................................................................................1 1.1.2 Historical Survey of the Stages of Energy Utilization ................................2 1.1.3 Basic Terms of Energy Conversion and Thermodynamics ........................5 1.1.3.1 Energy ................................................................................................5 1.1.3.2 Thermodynamic System .................................................................6 1.1.3.3 Basic State Parameters .....................................................................6 1.1.4 General Information on the TDS Working Body (Medium)......................8 1.1.4.1 Ideal Gas ............................................................................................9 1.1.4.2 Einstein Ideal Solid ........................................................................12 1.1.5 Work Done in a TDS ......................................................................................14 1.1.5.1 Mechanical Work Done on a TDS ................................................14 1.1.5.2 Thermal Work Done on a TDS .....................................................17 1.1.5.3 Other Types of Work in the System .............................................18 1.1.6 Cascade Mechanism of Energy Conversions and Transformations (Matrix of Direct Transformations) .............................................................19 1.1.7 Control Questions ..........................................................................................22 1.2 Basic Principles of Thermodynamics .......................................................................23 1.2.1 Law of Energy Conversions (First Principle of Thermodynamics) ........23 1.2.2 Law Concerning the Natural Direction That a TDP Follows (Second principle of thermodynamics) .......................................................27 1.2.3 Control Questions ..........................................................................................29 1.3 TDPs in an Ideal Medium ..........................................................................................29 1.3.1 Isochoric Process (Charles Process) .............................................................30 1.3.2 Isobaric Process ..............................................................................................32 1.3.3 Isothermal Process .........................................................................................34 1.3.4 Adiabatic Process ...........................................................................................36 1.3.5 Generalization of Processes Running in a TDS.........................................38 1.3.6 Control Questions ..........................................................................................39 1.4 Energy Conversion Machines and Their Thermodynamic Cycles: A Standard for Energy Eficiency—Carnot Cycle ..................................................40 1.4.1 Energy Conversion Machines: Basic Types ................................................40 1.4.2 Thermodynamic Requirements to the Power Machines .........................41 1.4.3 Carnot Thermodynamic Cycle Used as an Energy Standard .................44 1.4.4 Control Questions ..........................................................................................47 v vi Contents 1.5 Speciic Features of Real Energy Conversion ..........................................................47 1.5.1 General ............................................................................................................47 1.5.2 Phase Transformations of a TDS Working Body .......................................48 1.5.3 Cavitation ........................................................................................................51 1.5.4 Joule–Thompson Effect in Throttle-Valve Devices ...................................54 1.5.5 Vortex Effects: A Fluid Running into a Chamber .....................................57 1.5.6 Control Questions ..........................................................................................60 2. Conversion of Thermal Energy into Mechanical Work (Thermal Engines) ............63 2.1 Evolution of Engine Technologies ............................................................................63 2.2 Engine Technology of Otto–Langen (Carbureted Engine with Internal Combustion).................................................................................................................64 2.3 Engine Technology Developed by G. Brayton ........................................................69 2.4 Engine Technology Employing External Heat Sources (External Combustion Engines) .................................................................................................73 2.5 Mechanical–Thermal Technologies (Gas and Vapor Compression) ....................76 2.5.1 Compression Cycle ........................................................................................76 2.5.2 Classiication of Compressors ......................................................................78 2.5.3 Multistage Serial Compression ....................................................................80 2.6 Control Questions .......................................................................................................81 3. Thermoelectric and Co-Generation Technologies .........................................................83 3.1 Direct Thermoelectric Technologies ........................................................................84 3.1.1 Internal Ionization of Bodies and Photovoltaic Cells ...............................84 3.1.2 Thermoelectric Technology of Seebeck ......................................................88 3.1.3 Thermoelectric Technology for Oxidation Control in FCs (Technology of Schonbein/Grove) ...............................................................92 3.2 Indirect Thermoelectric Technologies .....................................................................95 3.2.1 Steam-Turbine Technology of J. Rankine ...................................................97 3.2.1.1 Tendency to Miniaturize the Overall Dimensions and Power of Nuclear Reactors ..........................................................102 3.2.1.2 Alchemic Future of the Thermal Technologies Used for Domestic and Industrial Needs? ................................................104 3.2.2 Brayton Gas-Turbine Technology ..............................................................105 3.3 Employment of Thermoelectric and Co-Generation Technologies in the Design of Vehicle Hybrid Gears .............................................................................107 3.3.1 Parallel Hybrid Scheme...............................................................................110 3.3.2 Serial Hybrid System (Serial Hybrids) ......................................................113 3.3.3 Economical Aspects of the Hybrid Drives (Optimization of the Ratio between the Power of the Thermal Engine and That of the Electric Motor) ..............................................................................................116 3.4 Control Questions .....................................................................................................118 4. Energy Rehabilitation: Regeneration and Recuperation ............................................121 4.1 Energy Conversion as Interpreted by the Principles of Thermodynamics ......121 4.2 Regeneration Technologies ......................................................................................128 4.2.1 Heat Exchanging Devices ...........................................................................130 4.2.1.1 Heat Regenerators ........................................................................130 Contents vii 4.2.2 Air-Compression Heat Pump, Operating of the Brayton Counter Clockwise Cycle ...........................................................................................133 4.2.3 Regeneration of Low Potential Thermal Energy Using a Vapor-Compression Heat Pump (Counterclockwise Rankine Cycle)..............................................................................................................134 4.3 Recuperation Technologies for Thermal Waste and Environmental Energy...138 4.3.1 Osmotic-Absorption Technology ...............................................................140 4.3.2 Hydrodynamic Recuperation Technologies ............................................144 4.3.3 Radiative-Optical Technologies Concentrating Solar Energy ...............147 4.3.3.1 Technology of the Relecting Geometry ...................................149 4.3.3.2 Technology of the Geometrical Optics ......................................151 4.4 Control Questions .....................................................................................................153 5. Energy Transfer and Storage ............................................................................................157 5.1 From Spontaneous to Controlled Transfer and Storage of Energy (Trends in the Development of Energy Transfer Technologies) .......................................157 5.2 Control of Heat Transfer in Energy Equipment ...................................................162 5.2.1 Vector Quantities of Heat Transfer and Gradient of the Temperature Field ........................................................................................162 5.2.1.1 Vector Quantities of Heat Transfer ............................................162 5.2.1.2 Temperature Field ........................................................................163 5.2.2 Energy Transfer in Solids, Gases, and Liquids (Thermal Conductivity and Convection) ...................................................................165 5.2.3 Characteristics of Heat Transfer through Compact Inhomogeneous Multilayer Walls .............................................................171 5.2.4 The Role of Heat Storage in Compact Bodies: Capacitive Thermal Resistance ......................................................................................................173 5.2.5 Radiative Heat Transfer: Relective Heat Resistance ..............................178 5.2.6 Control of the Heat Transfer through TDS Control Surfaces (Arrangement of the Thermal Resistances within the Structure of Compact Wall Elements) .............................................................................182 5.2.7 Calculation of the Thermal Insulation......................................................187 5.3 Control Questions .....................................................................................................190 6. Energy and Indoor Environment.....................................................................................193 6.1 The Necessity of Designing a Comfortable Indoor Environment .....................193 6.2 Energy Needed for Thermal Comfort in an Inhabited Area ..............................194 6.3 Energy and Clean Air ...............................................................................................204 6.3.1 The Necessity of Clean Air in the Occupied Area and Methods of Its Supply .......................................................................................................204 6.3.2 System of Indoor Environment Control in Ground Transport .............208 6.3.2.1 Requirements of the Indoor Environment of Ground Transport .......................................................................................208 6.3.2.2 Description of ECS Employed in Ground Transport ..............210 6.4 Energy and Light Comfort in Buildings ................................................................212 6.5 Estimation of Needed Energy .................................................................................215 6.6 Role of the Energy Manager in Specifying the Targets of Energy Saving .......216 6.6.1 Energy Eficiency Audit: Engagements of the Energy Managers .........217 viii Contents 6.6.2 Function of a Building Energy Manager in Attaining Energy Eficiency. Energy Management of Building Installations: A Precondition for Energy Eficiency ...........................................................221 6.7 Control Questions .....................................................................................................223 Conclusion ...................................................................................................................................227 Appendices ..................................................................................................................................229 References ...................................................................................................................................233 Index .............................................................................................................................................235 List of Figures Figure 1.1 Potential energy for v = const will depend on the pressure values, only: 1—cylindrical control surface; 2—moving wall-control surface; and 3—working luid (body) of the TDS. Here: G—reduced force acting on the moving wall and E —potential energy. ......................................8 n Figure 1.2 Longitudinal vibrations of atomic structures (Einstein waves). ....................13 Figure 1.3 Mechanical work done on a TDS consists in expansion (compression) of the volume of the control area: 1—initial state and 2—inal state. ............15 Figure 1.4 Mechanical work done on a TDS depends on the process “path”: 1—initial state of TDS and 2—inal state of TDS. (Notations used are as follows: p and ∆v —current pressure and increase of the speciic volume, while m and m are scaling moduli specifying the link p ν between the physical quantities p and Δv and their plots p, mm and ∆v, mm.) ..................................................................................................................16 Figure 1.5 Thermal work done on a TDS depending on the path of process development: 1—initial state of TDS and 2—inal state of TDS. ....................17 Figure 1.6 Thermal work done during two special TDPs: (a) isothermal and (b) adiabatic: 1—initial state of TDS and 2—inal state of TDS. .....................18 Figure 1.7 Plot of the work done by a TDS with multiple degrees of freedom: (a) electrical work and (b) chemical work. .........................................................18 Figure 1.8 Scheme of a cascade of energy conversion. .......................................................21 Figure 1.9 Energy model of central electricity supply: Rankine cycle operating with eficiency of 24%–29% and Brayton cycle gas-turbine stations operating with eficiency of 44%–49%. ..............................................................21 Figure 1.10 Scheme of an open TDS: 1—intake (p, v, w, T); 2—exhaust (p, v, w, T); 1 1 1 1 2 2 2 2 3—working volume (coincides with the control volume); and 4—fan (pump). ....................................................................................................................25 Figure 1.11 Illustration of the second law of thermodynamics: (a) TDS expands by dQ > 0, the load elevates; (b) TDS is in equilibrium (G − p . A = 0), 0 the load is in top dead center; (c) irst variant—TDS constricts (heat is released to the cold body 3); and (d) second variant—TDS compresses by exhausting the combustion products 4 into the cold environment and pressure drops (p . A = G): 1—hot body; 2—TDS control(cid:31) surface; 0 3—cold body (environment); and 4—combustion products; G—force reduced to the moving wall. ................................................................................28 Figure 1.12 TDS volume does not vary, mechanical work is zero. 1—TDS heating; 2—TDS cooling; 3—unmovable wall; and 4—control volume. ......................30 ix