ebook img

Introduction to Digital Signal Processing using MatLab with Application to Digital Communications PDF

508 Pages·2019·20.13 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Introduction to Digital Signal Processing using MatLab with Application to Digital Communications

K.S. Thyagarajan Introduction to Digital Signal Processing Using MATLAB with Application to Digital Communications K.S.Thyagarajan ExtensionProgram UniversityofCalifornia,SanDiego SanDiego,CA,USA ISBN978-3-319-76028-5 ISBN978-3-319-76029-2 (eBook) https://doi.org/10.1007/978-3-319-76029-2 LibraryofCongressControlNumber:2018935280 ©SpringerInternationalPublishingAG,partofSpringerNature2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbytheregisteredcompanySpringerInternationalPublishingAGpartof SpringerNature. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Thefieldofdigitalsignalprocessingiswellmaturedandhasfoundapplicationsin mostcommercialaswellashouseholditems.Itstartedinthe1960swhencomputers were used only inthe academic institutions. Moreover, these computers were built aroundvacuumtubeswithlimitedmemoryandslowprocessingpower.Thissitua- tionwasnotconducivetorapidadvancementsindigitalsignalprocessingtheory.As the computer technology advanced due to the invention of microprocessors and semiconductor memories, the field of digital signal processing also simultaneously progressed. Today, digital signal processing is used in a myriad of fields such as communications, medicine, forensics, imaging, and music, to name a few. It is, therefore,necessaryforanaspiranttolearnthebasicsofdigitalsignalprocessingso astobeabletoapplyhisorherknowledgeinthisfieldtocareeradvancement. There are many excellent textbooks on digital signal processing in the market. This book, though, is meant to serve working professionals who are looking for onlinecoursestocompletecertificateprogramsinareassuchaselectricalengineer- ing, systems engineering, communications, and embedded systems. Since these professional engineers are time-constrained, it is important that the textbook they aresupposedtofollowshouldbeeasytounderstand,brief,anduptothepoint,and should contain the necessary supplements as aids to understanding the materials. Withthesefactorsinmind,thisbookisbasedonmyonlinecourseindigitalsignal processingattheUniversityofCaliforniaExtensionProgram,SanDiego.Thisbook uses MATLAB tools to make understanding of the materials easier. In my experi- enceinteachingthisonlinecourse,Ifoundthatstudentscomefromdifferentfields, butmostlyfromdigitalcommunications–hardwareandsoftware.Therefore,Ifindit appropriate to include applications of digital signal processing in digital communications.Thestudentsarerequiredtohaveacollege-levelmathbackground tofullyunderstandthetopicsdiscussedinthisbook. After a brief introduction to areas such as audio/speech processing, digital communications, and digital image processing, Chap. 2 starts with the discussion v vi Preface on discrete-time signals and systems. It characterizes the various discrete-time signals and systems in mathematical terms followed by examples to clarify the subject matter. Chapter 2 also describes the process of converting continuous-time signalstodiscrete-timesequences.TheZ-transformisintroducedinChap.3.Since Z-transform isvery useful in both analysis and design of discrete-time systems, its propertiesareelaboratedwithseveralexamples.Nexttherepresentationofdiscrete- timesignalsandsystemsinthefrequencydomainisdiscussedinChap.4.Here,the connection between the Z-transform and discrete-time Fourier transform is explained. Several examples are worked out to make the subject matter clearer. Sincedigitalsignalprocessingimpliescomputationalmethods,Chapt.5introduces theconceptofdiscreteFouriertransform.Italsodealswiththerelationshipbetween discrete-time Fourier transform and discrete Fourier transform. Again, MATLAB- basedexamplesareincluded. Once the signals and systems are described in the time and frequency domains, Chap.6thendealswiththedesignofinfiniteimpulseresponse(IIR)digitalfilters.It treats the design of IIR digital filters based on analytical methods as well as on computer-based techniques. In addition, real-life systems are simulated using MATLAB/Simulinktool.Continuingfurther,Chap.7discussesthedesignoffinite impulse response(FIR)digitalfiltersusing boththeanalyticalandcomputer-based methods. Many examples are included to aid the students in understanding the materialbetter.ItisnotenoughjusttolearnthedesignofIIRandFIRdigitalfilters. A professional engineer must know how to implement these filters in various real- time applications. Therefore,Chap.8isincluded,whichdeals with the signal flow graphs of digital filters. It describes both canonical and noncanonical structures to implementIIRandFIRdigitalfilters.Knowinghowtodrawthesignalflowgraphs ofdigitalfiltersmakesonetoimplementthemeitherinsoftwareorhardware.Even though discrete Fourier transform (DFT) is introduced in Chap. 5, it does not deal with the efficient implementation of the DFTs. Chapter 9 describes efficient com- putational methods to calculate the DFT of a sequence. It further deals with short- timeFouriertransform,zoomFFT,etc. So far these chapters describe discrete-time signals and systems and various designtechniques.InChap.10,theapplicationofdigitalsignalprocessingmethods in wireless communications in general and digital communications in particular is discussed. The chapter deals with reducing the intersymbol interference, pulse shaping, detection of binary data using matched filters, channel equalization, phase-locked loop, orthogonal frequency division multiplexing, and software- defined radio, all using digital signal processing. Examples based on MATLAB arepresentedalongwithSIMULINK-baseddigitalcommunicationssystem.Codes forallMATLABandSIMULINK. Ithank Tony Babaian for giving methe opportunity toteach theonlinecourses titledDSPIandDSPforwirelesscommunications.MysincerethankstoSveteslav Maricforeditingthebookdraft.Ialsothankthestudentsfortheirfeedbackonthe contents of the application of DSP in wireless communications. I am indebted to Preface vii Mathworks for their continued support in providing MATLAB license, which enabledmetodevelopthisandmyotherbooks.MythanksgotoSpringerPublishing Companyandtheirstaffforpublishingmybook.Iamextremelygratefultomywife Vasú,forsuggestingtowritethisbook.Withoutherkindandgentleencouragement, Iwouldnothavebeenabletoeventhinkofwritingthisbook,letalonecompletingit. SanDiego,CA,USA K.S.Thyagarajan Contents 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 WhatIsDigitalSignalProcessing. . . . . . . . . . . . . . . . . . . . . . 1 1.2 AFewApplicationsofDigitalSignalProcessing. . . . . . . . . . . 5 1.3 ATypicalDigitalSignalProcessingSystem. . . . . . . . . . . . . . . 10 1.4 Continuous-TimeSignalsandSystems. . . . . . . . . . . . . . . . . . . 11 1.5 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.6 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Discrete-TimeSignalsandSystems. . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 TypicalDiscrete-TimeSignals. . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 Discrete-TimeSystems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4 ConvolutionSum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.5 LinearDifferenceEquation. . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.6 SamplingaContinuous-TimeSignal. . . . . . . . . . . . . . . . . . . . 39 2.7 ConversionofContinuous-TimeSignalstoDigitalSignals. . . . 44 2.8 PerformanceofA/DConverters. . . . . . . . . . . . . . . . . . . . . . . . 51 2.9 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.10 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3 Z-Transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.1 Z-TransformDefinition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.2 PropertiesofZ-Transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3 Z-TransformandDifferenceEquation. . . . . . . . . . . . . . . . . . . 74 3.4 PolesandZeros. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.5 InverseZ-Transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.6 MATLABExamples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 ix x Contents 3.7 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 3.8 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4 FrequencyDomainRepresentationofDiscrete-Time SignalsandSystems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.2 Discrete-TimeFourierTransform. . . . . . . . . . . . . . . . . . . . . . . 110 4.3 InverseDiscrete-TimeFourierTransform. . . . . . . . . . . . . . . . . 113 4.4 PropertiesofDTFT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.5 FrequencyDomainRepresentation ofLTIDiscrete-TimeSystems. . . . . . . . . . . . . . . . . . . . . . . . . 118 4.6 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 4.7 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5 DiscreteFourierTransform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 5.2 DefinitionofDFT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 5.3 RelationshipBetweenDTFTandDFT. . . . . . . . . . . . . . . . . . . 152 5.4 InverseDFT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 5.5 EffectofSamplingtheDTFTontheReconstructed Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 5.6 CircularConvolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 5.7 PropertiesoftheDFT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 5.8 LinearConvolutionUsingCircularConvolution. . . . . . . . . . . . 166 5.9 LinearConvolutionofaFinite-LengthSequence withanInfinite-LengthSequence. . . . . . . . . . . . . . . . . . . . . . . 168 5.10 DiscreteTransforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 5.11 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 5.12 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 6 IIRDigitalFilters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 6.2 ImpulseInvarianceTechnique. . . . . . . . . . . . . . . . . . . . . . . . . 190 6.3 DesignofIIRDigitalFiltersintheFrequencyDomain. . . . . . . 194 6.4 DesignofIIRDigitalFiltersUsingFrequency Transformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 6.5 Computer-AidedDesignofIIRDigitalFilters. . . . . . . . . . . . . . 220 6.6 GroupDelay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 6.7 SimulationUsingSimulink. . . . . . . . . . . . . . . . . . . . . . . . . . . 231 6.8 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 6.9 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 Contents xi 7 FIRDigitalFilters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 7.1 TypesofLinear-PhaseFIRFilters. . . . . . . . . . . . . . . . . . . . . . 245 7.2 Linear-PhaseFIRFilterDesign. . . . . . . . . . . . . . . . . . . . . . . . 247 7.3 Computer-AidedDesignofLinear-PhaseFIRFilters. . . . . . . . . 276 7.4 Discrete-TimeHilbertTransformer. . . . . . . . . . . . . . . . . . . . . . 299 7.5 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 7.6 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 8 DigitalFilterStructures. . .. . . . .. . . .. . . .. . . .. . . . .. . . .. . . .. 313 8.1 SignalFlowGraph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 8.2 IIRDigitalFilterStructures. . . . . . . . . . . . . . . . . . . . . . . . . . . 315 8.3 FIRFilterStructures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 8.4 FiniteWordLengthEffect. . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 8.5 FIRLatticeStructure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 8.6 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379 8.7 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381 9 FastFourierTransform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385 9.1 Brute-ForceComputationofDFT. . . . . . . . . . . . . . . . . . . . . . 385 9.2 FastFourierTransform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386 9.3 SpectralAnalysisofDiscrete-TimeSequences. . . . . . . . . . . . . 394 9.4 Fixed-PointImplementationofFFT. . . . . . . . . . . . . . . . . . . . . 401 9.5 SlidingDiscreteFourierTransform. . . . . . . . . . . . . . . . . . . . . 402 9.6 EnergyCompactionPropertyRevisited. . . . . . . . . . . . . . . . . . 407 9.7 ZoomFFT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416 9.8 ChirpFourierTransform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419 9.9 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422 9.10 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426 10 DSPinCommunications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427 10.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427 10.2 SamplingRateConversion. . . . . . . . . . . . . . . . . . . . . . . . . . . 428 10.3 OversampledADC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434 10.4 OversampledDAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441 10.5 CancelationofInter-SymbolInterference. . . . . . . . . . . . . . . . . 442 10.6 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488 10.7 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493 Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495 Chapter 1 Introduction Thefieldofdigitalsignalprocessingiswellmaturedandhasfoundapplicationsin mostcommercialaswellashouseholditems.Itstartedinthe1960swhencomputers were used only inthe academic institutions. Moreover, these computers were built aroundvacuumtubeswithlimitedmemoryandslowprocessingpower.Thissitua- tionwasnotconducivetorapidadvancementsindigitalsignalprocessingtheory.As the computer technology advanced due to the invention of microprocessors and semiconductor memories, the field of digital signal processing also simultaneously progressed. Today, digital signal processing is used in a myriad of fields such as communications, medicine, forensic, imaging, and music to name a few. It is, therefore, necessary for an aspirant to learn the basics of digital signal processing soastobeabletoapplyhisorherknowledgeinthisfieldtocareeradvancement. 1.1 What Is Digital Signal Processing A signal can be considered, for example, as a voltage or current that varies as a functionoftime.Adigitalsignal,ontheotherhand,canbeanysequenceofnumbers that can be stored in a computer memory or a piece of hardware. Or, it may be acquiredinrealtimefromasignalsource.Ifthissequenceofnumbersisrelatedor meaningful, then, it is a useful signal or just signal. Figure 1.1 shows a signal sequence. If the sequence of numbers is random, it can be considered as noise. In Fig.1.2arandom sequenceisshown.Therefore,digitalsignalprocessingrefers to anyoperationperformedonthedigitalsignal.Thisprocessingmaybecarriedoutin real time or non-real time depending on the application. The type of digital signal Electronic supplementary material: The online version of this article (https://doi.org/10.1007/ 978-3-319-76029-2_1)containssupplementarymaterial,whichisavailabletoauthorizedusers. ©SpringerInternationalPublishingAG,partofSpringerNature2019 1 K.S.Thyagarajan,IntroductiontoDigitalSignalProcessingUsingMATLAB withApplicationtoDigitalCommunications, https://doi.org/10.1007/978-3-319-76029-2_1 2 1 Introduction Fig.1.1 Anexampleofa Example of a discrete sequence signalsequence 1 0.9 0.8 0.7 0.6 e d u plit0.5 m A0.4 0.3 0.2 0.1 0 0 5 10 15 n Example of a noise sequence 4 3 2 1 e d plitu 0 m A -1 -2 -3 -4 0 5 10 15 20 25 30 35 n Fig.1.2 Anexampleofarandomornoisesequence processingdependsontheparticularapplicationinhand.Filteringisatypicalsignal processingoperationinwhichunwantedcomponentsorfeaturescanberemovedor filtered out from an input digital signal. Consider an example of a signal, which consists of components of two sinusoidal frequencies at 1500 Hz and 4000 Hz, respectively,asshowninFig.1.3a.Wewanttoremovetheunwantedcomponentat

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.