Introduction to Business Analytics Using Simulation Page left intentionally blank Introduction to Business Analytics Using Simulation Jonathan P. Pinder School of Business Wake Forest University Winston-Salem, NC, United States AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1800, San Diego, CA 92101-4495, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom Copyright © 2017 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechani- cal, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permis- sions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility. To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein. Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the Library of Congress British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library ISBN: 978-0-12-810484-2 For information on all Academic Press publications visit our website at https://www.elsevier.com/ Publisher: Nikki Levy Acquisition Editor: J. Scott Bentley Editorial Project Manager: Susan Ikeda Production Project Manager: Nicky Carter Designer: Matthew Limbert Typeset by Thomson Digital Contents Preface ....................................................................................................................................................xi Acknowledgments ...............................................................................................................................xiii CHAPTER 1 Business Analytics is Making Decisions .......................................................1 Introduction .........................................................................................................................2 1.1 Business Analytics is Making Decisions Subject to Uncertainty ................................2 1.2 Components of Business Analytics .............................................................................2 1.3 Uncertainty = Probability = Stochastic ........................................................................3 1.4 What is Simulation? .....................................................................................................4 1.4.1 Why Use Simulation? ........................................................................................4 1.4.2 Simulation Applications .....................................................................................5 1.5 Monte Carlo Simulation and Random Variables .........................................................5 1.6 Simulation Terminology ............................................................................................10 1.7 Probability as Relative Frequency .............................................................................12 1.8 Overview of Simulation Process ................................................................................18 1.9 Random Number Generation in Excel .......................................................................18 Exercise Set 1: Introduction to Decision-Making and Simulation ...................................19 1.10 Extra Practice .............................................................................................................20 CHAPTER 2 Decision-Making and Simulation ...................................................................23 Introduction .......................................................................................................................23 2.1 Introduction to Decision-Making ..............................................................................23 2.1.1 Define the Problem ..........................................................................................24 2.1.2 Identify and Weight the Criteria ......................................................................24 2.1.3 Generate Alternatives .......................................................................................24 2.1.4 Evaluate Each Alternative ................................................................................25 2.1.5 Compute the Optimal Decision ........................................................................25 2.2 Probability: The Measure of Uncertainty ..................................................................28 2.3 Where do the Probabilities Come From? ...................................................................29 2.4 Elements of Probability .............................................................................................35 2.5 Probability Notation ...................................................................................................35 2.6 Examples of Simulation and Decision-Making .........................................................36 Exercise Set 2: Simulation and Decisions ........................................................................44 CHAPTER 3 Decision Trees ......................................................................................................47 Introduction .......................................................................................................................47 3.1 Decision Trees and Expected Value ...........................................................................47 3.2 Properties of Decision Trees. .....................................................................................49 3.2.1 Linear Transforms ............................................................................................49 v vi Contents 3.3 Overview of the Decision Making Process ................................................................52 3.4 Sensitivity Analysis ....................................................................................................58 3.5 Expected Value of Perfect Information ......................................................................61 3.6 Summary of the Decision Analysis Process ..............................................................65 Exercise Set 3: Decision Trees ..........................................................................................65 CHAPTER 4 Probability: Measuring Uncertainty...............................................................71 Introduction .......................................................................................................................71 4.1 Probability: Measuring Likelihood ............................................................................71 4.2 Probability Distributions ............................................................................................72 4.3 General Probability Rules ..........................................................................................73 4.4 Conditional Probability and Bayes’ Theorem ............................................................77 Exercise Set 4: General Probability Rules ........................................................................82 Further Exercises: Common Interview Questions Regarding Probability ........................85 CHAPTER 5 Subjective Probability Distributions ..............................................................87 Introduction .......................................................................................................................87 5.1 Subjective Probability Distributions—Probability From Experience ........................88 5.2 Two-Point Estimation: Uniform Distribution ............................................................88 5.2.1 Discrete Uniform Distribution .........................................................................89 5.3 Three-Point Estimation: Triangular Distribution .......................................................96 5.3.1 Simulating a Symmetric Triangular Distribution.............................................98 5.3.2 Simulating an Asymmetric Triangular Distribution.......................................100 5.4 Five-Point Estimates for Subjective Probability Distributions ................................101 5.4.1 Simulating a Five-Point Distribution .............................................................104 5.4.2 Other Estimates for Subjective Probability Distributions ..............................106 Exercise Set 5: Subjective Probability Distributions ......................................................111 Exercise Set 6: Decision Models Using Subjective Probability .....................................112 CHAPTER 6 Empirical Probability Distributions ..............................................................117 Introduction .....................................................................................................................117 6.1 Empirical Probability Distributions—Probability From Data .................................118 6.2 Discrete Empirical Probability Distributions ...........................................................118 6.3 Continuous Empirical Probability Distributions......................................................127 Exercise Set 7: Empirical Probability Distributions .......................................................133 Exercise Set 8: Decision Models Using Empirical Probability ......................................137 CHAPTER 7 Theoretical Probability Distributions ..........................................................151 Introduction .....................................................................................................................151 7.1 Theoretical/Classical Probability .............................................................................152 7.2 Review of Notation for Probability Distributions ....................................................152 7.3 Discrete Theoretical Distributions ...........................................................................153 7.3.1 Uniform Distribution ......................................................................................153 7.3.2 Discrete Uniform Distribution .......................................................................153 Contents vii 7.3.3 Continuous Uniform Distribution ..................................................................154 7.3.4 Bernoulli Distribution ....................................................................................155 7.3.5 Binomial Distribution ....................................................................................155 7.3.6 Poisson Distribution .......................................................................................162 7.4 Continuous Probability Distributions ......................................................................169 7.4.1 Normal Distribution .......................................................................................169 7.5 Normal Approximation of the Binomial and Poisson Distributions ........................174 7.6 Using Distributions in Decision Analysis ................................................................179 7.7 Overview of Probability Distributions .....................................................................186 Exercise Set 9: Discrete Theoretical Probability Distributions.......................................187 Exercise Set 10: Continuous Theoretical Probability Distributions ...............................188 Exercise Set 11: Decision Models Using Theoretical Probability Distributions ............190 CHAPTER 8 Simulation Accuracy: Central Limit Theorem and Sampling ..............197 Introduction .....................................................................................................................197 8.1 Introduction to Sampling and the Margin of Error ..................................................198 8.2 Adding Distributions................................................................................................198 8.3 Samples ....................................................................................................................211 8.4 Central Limit Theorem ............................................................................................211 8.4.1 The Central Limit Theorem ...........................................................................212 8.5 Confidence Intervals and Hypothesis Testing for Proportions ................................219 8.5.1 Hypothesis Testing .........................................................................................226 8.6 Confidence Intervals and Hypothesis Testing for Means ........................................234 8.6.1 Small (n ≤ 30) Samples: Use Student’s t-Distribution .................................238 Exercise Set 12: Adding Independent Random Variables ...............................................248 Exercise Set 13: Sampling—Estimating and Testing Proportions ..................................252 Exercise Set 14: Sampling—Estimating and Testing Means ..........................................253 CHAPTER 9 Simulation Fit and Significance: Chi-Square and ANOVA ....................259 Introduction .....................................................................................................................260 9.1 Conditional Probabilities—Again ............................................................................260 9.1.1 Examples of Conditional Probability Estimation Procedures .......................261 9.2 Conditional Probability for Groups .........................................................................262 9.2.1 Examples of ANOVA and Chi-Square Situations ..........................................262 9.3 Chi-Square (χ2): Are the Probability Distributions the Same? ................................264 9.3.1 Chi-Square: Actual Frequencies Versus Expected Frequencies ....................266 9.4 Analysis of Variance: Are the Groups’ Averages the Same? ....................................276 9.4.1 Conducting an ANOVA: p-Value Again ........................................................278 9.4.2 Why is it Called Analysis of VARIANCE if Compares Averages? ...............283 9.4.3 An Approximate Comparison of More Than Two Groups ............................285 9.4.4 What if Groups Are, or Are Not, Significantly Different? ............................287 9.5 ANOVA Versus Chi-Square: Likert Scale ...............................................................295 Exercise Set 15: Statistical Tools: Chi-Square and ANOVA...........................................300 viii Contents CHAPTER 10 Regression ...........................................................................................................313 Introduction .....................................................................................................................315 10.1 Overview of Regression ...........................................................................................315 10.1.1 Basic Linear Model .....................................................................................316 10.2 Measures of Fit and Significance .............................................................................319 10.2.1 Standard Error of the Slope: SE .................................................................319 β1 10.2.2 t -stat .............................................................................................................319 10.2.3 Standard Error of the Estimate ....................................................................320 10.2.4 Coefficient of Determination: r2 ..................................................................321 10.3 Multiple Regression .................................................................................................327 10.4 Nonlinear Regression: Polynomials.........................................................................329 10.4.1 Nonlinear Models: Polynomials ..................................................................330 10.4.2 Nonlinear Models: Nonlinear (Logarithmic) Transformations ...................332 10.5 Indicator Variables ...................................................................................................334 10.6 Interaction Terms .....................................................................................................347 10.7 Regression Pitfalls ...................................................................................................351 10.7.1 Nonlinearity .................................................................................................351 10.7.2 Extrapolation Beyond the Relevant Range ..................................................353 10.7.3 Correlation ≠ Causality ................................................................................354 10.7.4 Reverse Causality ........................................................................................354 10.7.5 Omitted-Variable Bias .................................................................................354 10.7.6 Serial Correlation .........................................................................................354 10.7.7 Multicollinearity ..........................................................................................355 10.7.8 Data Mining .................................................................................................355 10.7.9 Heteroscedasticity ........................................................................................355 10.8 Review of Regression ..............................................................................................356 Exercise Set 16: Regression ............................................................................................357 CHAPTER 11 Forecasting ..........................................................................................................371 Introduction .....................................................................................................................373 11.1 Overview of Forecasting ..........................................................................................373 11.2 Measures of Accuracy ..............................................................................................373 11.3 Components of Time Series Data ............................................................................377 11.4 Forecasting Trend ....................................................................................................382 11.4.1 Linear Trend ................................................................................................382 11.4.2 Exponential Trend ........................................................................................382 11.4.3 Autoregression .............................................................................................386 11.5 Forecasting Seasonality ...........................................................................................392 11.5.1 Ratio-to-Moving-Average Method (X-11 X-12) .........................................396 11.5.2 Summary of the Ratio-to-Moving-Average Method ...................................402 11.6 Aggregating Sales ....................................................................................................402 11.7 Review of Forecasting With Regression ..................................................................405 Exercise Set 17: Forecasting ...........................................................................................405 Contents ix APPENDIX 1 Summary of Simulation ....................................................................................419 A1.1 Overview of the Simulation Process ........................................................................419 A1.2 Review of Probability Distributions ........................................................................419 A1.3 Methods to Simulate Probability Distributions .......................................................420 A1.3.1 Random Numbers by Single Formula Method ...........................................421 A1.3.2 Random Numbers by VLOOKUP Method .................................................422 APPENDIX 2 Statistical Tables ...............................................................................................425 A2.1 Normal Distribution .................................................................................................425 A2.2 Student’s t-Distribution ............................................................................................427 Index ...................................................................................................................................................429
Description: