Description:Nosso cenário mundial atual é caracterizado pela criação e crescimento de inúmeras bases de dados em velocidade exponencial. Para processar e obter informação útil a partir destes dados, é necessário automatizar diversas tarefas de coleta, processamento e análise de dados. A vasta área de Data Science (ou Ciência de Dados) refere-se a um conjunto de métodos com o objetivo apoiar decisões de negócio, a partir da coleta de dados de várias fontes para fins de análise, de forma sistematizada. Neste livro, Tatiana Escovedo e Adriano Koshiyama focam no processo e nas técnicas relacionadas aos algoritmos preditivos mais comumente utilizados, mas mostrando também a importância da etapa de preparação dos dados brutos, limpeza e análise. Você vai aprender como utilizar Data Science para resolver problemas e agregar valor ao negócio, aprendendo com os dados. O trajeto inicia com uma introdução a conceitos de Estatística e Álgebra Linear, passando para o tema Pré-processamento de dados, uma etapa importantíssima para o entendimento do problema e preparação dos dados para a aplicação dos algoritmos de Machine Learning, chegando aos modelos de Classificação, Regressão, Associação e Agrupamento. Todos os conceitos teóricos apresentados serão complementados com exemplos práticos na linguagem R.