ebook img

Interior ballistics two-phase reactive flow model applied to large caliber guided projectile-gun system PDF

11 Pages·2.24 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Interior ballistics two-phase reactive flow model applied to large caliber guided projectile-gun system

Hindawi Publishing Corporation Advances in Mechanical Engineering Volume 2014, Article ID 698032, 10 pages http://dx.doi.org/10.1155/2014/698032 Research Article Interior Ballistics Two-Phase Reactive Flow Model Applied to Large Caliber Guided Projectile-Gun System MahmoudRashad,XiaoBingZhang,andHazemElSadek SchoolofEnergyandPowerEngineering,NanjingUniversityofScienceandTechnology,Nanjing210094,China CorrespondenceshouldbeaddressedtoMahmoudRashad;[email protected] Received11December2013;Accepted7February2014;Published29April2014 AcademicEditor:JiinY.Jang Copyright©2014MahmoudRashadetal. This is an open access article distributed under the Creative Commons Attribution License,whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperly cited. Transientcomplexphenomenatakeplaceinagunduringinteriorballisticcycle.Understandingthesephenomenaclearlyand describingthemathematical modelsaccurately arecrucialtopredictthebehavior ofgunsystemconsideringfiringsafetyand performance.AmathematicalmodelbasedonEulerian-Eulerianapproachforreactivegas-solidflowarisingduringinteriorballistic cycleinsidelargecalibernavalgunguidedprojectilesystemwasdeveloped.Themodelincludedthegoverningequationsofmass, momentum,andenergyforbothphasesaswellastheconstitutivelaws.Thesystemofequationswassolvedusingsecond-order accurateMacCormacktechnique.One-dimensionalshocktubemodelwasutilizedtotesttheabilityofthenumericalalgorithm insolvingtheinitialboundaryvalueproblemforthesystemofequationswithshockwavebehavior.Thenumericalmethodwas verifiedusingexactsolutionofatestproblem.Themovingcontrolvolumeconservationmethodwasusedtohandlethemoving boundaryandaself-adaptingmethodwasusedtoexpandthecomputationaldomaininordertofollowtheprojectilemotion. Numericalresultswerevalidatedwithexperimentaldata.Theinteriorballisticsperformanceofa130mmnavalgunwasclosely predictedusingthepresentedmodelandthenumericalcode. 1.Introduction with minimal computer resources, they cannot address the physical hydrodynamics of the problem as manifested in Increasing demands for superior ballistic performance of ignition-induced pressure waves [6]. Continually incidence large caliber naval guns and up-to-date guided munitions of catastrophic failures in conventionalguns was ultimately developmentsaretheleadingstimulustogothroughrealistic traced to ignition and combustion instability problems [7– investigations for the complex phenomenon that occurs 9]. Great demands to conquer and analyze these problems during interior ballistic cycle. Events inside gun chamber motivatedrevolutionarydevelopmentoftwo-phaseflowinte- possessatransientbehaviorcoupledwithcomplexreactions rior ballistic models which have the advantage of assessing underhighpressureandtemperatureconditions.Atthesame theignitionstimulusonflamespreadingandtheformation time guided munitions must survive against the rigorous of pressure waves. Two-phase flow problems are solved loads during gun firing and deliver their intended utility at throughtwoapproaches:theEulerian-Eulerianapproachand thetarget. Eulerian-Lagrangian approach. Models based on Eulerian- Earlyinteriorballisticsmodels,whichappearedinabun- Eulerian approach [10–14], also called two-fluid models, dance as computer codes, are of the zero-dimensional consider the gas and solid phase as two continuum flow (lumped parameters) variety [1]. These models exemplify phases, with each having its mass, momentum, and energy such assumptions as uniform and instantaneousignition of equations, respectively. These models have the advantages the entire propellant charge, with combustion taking place in such cases where the density of solid particles possesses inasmoothlyvarying,well-stirredmixture[2–5].Although high values and the solid phase volume fraction could be lumpedparametersmodelshavetheadvantagesofsimplicity aneffectiveparameter.So,suchmodelsareappropriateand aswellasitguaranteeparametricanalysisandoptimization popular in most interior ballistic numerical simulations. 2 AdvancesinMechanicalEngineering phases and the energy conservation law for the gas phase. Since the solid propellant ignition is depending on surface temperature and the model assumes that propellant grains are incompressible, the energy equation for the solid phase wasreplacedbytheinterphaseheattransferequationsforthe granularpropellants.Thestatementofaconstantdensityfor the solid propellant particles serves as the equation of state forthesolidparticles;thatis,𝜌𝑝 = constant.Thegoverning 1 2 3 4 5 equationsforvariousphasesarepresentedasfollows. (1) Breech block (4) Guided projectile Massconservationequationofthegasphaseis (2) MP propellant grains (5) Barrel (3) Igniter 𝜕(𝜑𝜌 𝐴) 𝑔 +∇⋅(𝜑𝜌 𝑢 𝐴)=𝑚̇ 𝐴+∑𝑚̇ 𝐴. (1) Figure1:Schematicillustrationofpropellantchargeinlargecaliber 𝜕𝑡 𝑔 𝑔 𝑐 ign NGGPS. Massconservationequationofthesolidphaseis On the other hand, models based on Eulerian-Lagrangian 𝜕[(1−𝜑)𝜌 𝐴] 𝑝 +∇⋅[(1−𝜑)𝜌 𝑢 𝐴]=−𝑚̇ 𝐴. (2) approachtreatthegasphaseascontinuum,whichismodeled 𝜕𝑡 𝑝 𝑝 𝑐 by the local averaged equations at the macroscopic scale, while the solid phase is treated as an individual particle Momentumconservationequationofgasphaseis whichcanbetracedinspaceandtime[15–20].Thisapproach hasadvantagesthatitcanhandlepolydispersedparticlesize 𝜕(𝜑𝜌 𝑢 𝐴) 𝑔 𝑔 +∇⋅(𝜑𝜌 𝑢 𝑢 𝐴) distributionsaswellaspredictingtwo-phaseflowsincluding 𝜕𝑡 𝑔 𝑔 𝑔 (3) particles that have large accelerations. But such models are complex and need huge computer resources as well as long =−𝑓𝐴+𝑚̇ 𝑢 𝐴+∑𝑚̇ 𝑢 𝐴−(𝜑𝐴)∇𝑝. 𝑠 𝑐 𝑝 ign ign timeduringruncomparedtoEulerian-Eulerianmodels. In this work, a mathematical model based on Eulerian- Momentumconservationequationofsolidphaseis Eulerian approach for a gas-solid flow of solid granular propellant and its products of combustion inside the gun 𝜕[(1−𝜑)𝜌𝑝𝑢𝑝𝐴] barrel during interior ballistics cycle in large caliber naval 𝜕𝑡 gunguidedprojectilesystem(NGGPS)wasestablished.The (4) model includes the balance equationsof mass, momentum, +∇⋅[(1−𝜑)𝜌 𝑢 𝑢 𝐴]+∇[(1−𝜑)𝑅 𝐴] 𝑝 𝑝 𝑝 𝑝 andenergyforbothphasesaswellasnecessaryconstitutive =𝑓𝐴−𝑚̇ 𝑢 𝐴−(1−𝜑)𝐴∇𝑝. laws. A second-order accurate MacCormack technique was 𝑠 𝑐 𝑝 utilizedtosolvethehyperbolicsystem ofequations[21].G. A. Sod shock tube test was utilized to verify the ability of Energyconservationequationofthegasphaseis MacCormack algorithm to solve the initial boundary value 𝜕[𝜑𝜌 𝐴(𝑒 +𝑢 ⋅𝑢 /2)] problem (IBVP) for the system of equations with shock 𝑔 𝑔 𝑔 𝑔 wavebehavior[22].Themovingcontrolvolumeconservation 𝜕𝑡 (MCVC) method was established to handle the moving 𝑝 𝑢 ⋅𝑢 boundaryandaself-adaptingmethodwasusedtoexpandthe +∇⋅[𝜑𝜌 𝑢 𝐴(𝑒 + + 𝑔 𝑔)] computational domain in order to follow the movement of 𝑔 𝑔 𝑔 𝜌𝑔 2 theprojectiledownthegunbore[23–25].Figure1illustrates 𝑝 𝑢 ⋅𝑢 schematicallytheconfigurationofatypicalNGGPScharge. =−𝑄 𝐴−𝑓𝑢 𝐴+𝑚̇ 𝐴(𝑒 + + 𝑝 𝑝) Thistwo-phaseflowcodewasdevotedtosimulatetheevents 𝑝 𝑠 𝑝 𝑐 𝑝 𝜌 2 𝑝 during interior ballistic cycle inside a real large caliber NGGPS.Thepredictednumericalresultswerevalidatedwith 𝜕(𝐴𝜑) +∑𝑚̇ 𝐻 𝐴−𝑝 . experimentaldata. ign ign 𝜕𝑡 (5) 2.TheoreticalModel Inthepreviousequations,𝜑isthevolumefractionofthe The physical events, criterion of ignition, flame spreading, gasphase,𝜌𝑔,𝜌𝑝aregasandsoliddensity,𝑢𝑔,𝑢𝑝aregasand andcombustionofpropellantgrainsinsidethegunchamber solidvelocity,𝑃,𝑒𝑔arepressureandinternalenergyofthegas can be referred to in [26]. Based on charge configuration phase,𝑚𝑐istherateofgasmassgenerationduetopropellant showninFigure1,atwo-phaseflowmathematicalmodelwas combustion,𝑚 isthemassflowrateofgasfromthevent- ign establishedbasedonEulerian-Eulerianapproach.Interaction holes on the igniter, 𝐻 is stagnation enthalpy of the gas ign processesbetweenphasesareaddedtosingle-phaseconser- flowfromthevent-holesontheigniter,and𝑓𝑠,𝑄𝑝,and𝑅𝑝are vation laws via source terms. The governing equations are interphase drag, interphase heat transfer, and intergranular madeofthemassandmomentumconservationlawsforboth stress,respectively. AdvancesinMechanicalEngineering 3 The interphase heat transfer equations (6)–(8) for the And the rate of gas mass generation due to propellant granularpropellantsreplacethegoverningequationforsolid combustion was calculated depending on the propellant phaseenergyandweredevelopedasfollows: burningrateequationasfollows: 𝜌 (1−𝜙)𝑆 𝑞 𝑑𝑟 𝑄 = 𝑃 𝑝 𝑝 =−𝑑̇ 𝑃 𝑀 𝑑𝑡 𝑃 𝑆 =𝜎 𝑆 (6) 𝑑̇=𝑏𝑝𝑛 𝑝 𝑖 (10) 𝑀 =(1−𝜓)𝑀, 𝜌2(1−𝜙)𝑆 𝑑̇ 𝑝 𝑖 𝑚̇ = 𝑝 𝑝 , 𝑐 𝑀 𝑝 where𝜎,𝜓arethepropellant’srelativeburnedsurfaceratio and the propellant’s relative burned quantity, respectively. where 𝑏 is theburningrate coefficient and 𝑛 isthe burning They were determined from the shape function relations of seven perforated propellant grains. 𝑆𝑖, 𝑀𝑖 are the initial rateexponent.Theinteractionbetweenthetwophases,such as interphase drag and intergranular stress, is necessary to burning surface and the initial mass of propellant grain, close the governing equations above. For more details, we respectively.Consideringthemechanismsofconvectionand radiation,theinterphaseheatexchange𝑞iscalculatedas referto[18]. 𝑞=(ℎ +ℎ )(𝑇 −𝑇 ) 3.NumericalApproach 𝑝 re 𝑔 ps 0.4Re2𝑝/3Pr1/3𝜆𝑓 4𝛾 3.1. MacCormack Technique. Equations (1)–(5) for one- ℎ𝑝 = 𝑑 , Pr= 9𝛾−5 dimensional two-phase reactive flow can be written in the 𝑝 form of conservation laws for simplifying the numerical 𝑑𝑝𝜌𝑔󵄨󵄨󵄨󵄨󵄨𝑢𝑝−𝑢𝑔󵄨󵄨󵄨󵄨󵄨 solution: Re𝑝 = 𝜇 𝜕𝑈 𝜕𝐸 + =𝑆, (11) (7) 𝜕𝑡 𝜕𝑥 𝐶 𝑇3/2 1 𝑔 𝜇= 𝐶2+𝑇𝑔 where𝑈,𝐸,and𝑆aretheconservedvariables,thefluxvector, andthesourcevector,respectively. 𝐶3𝑇𝑔3/2 Thecomponentsof𝑈aretheconservedvariablesandcan 𝜆 = 𝑓 𝐶 +𝑇 bewrittenas 4 𝑔 ℎ =𝐶 (𝑇 +𝑇 )(𝑇2+𝑇2), 𝜑𝜌 𝐴 re 5 𝑔 ps 𝑔 ps 𝑔 (1−𝜑)𝜌 𝐴 wttrhahenetrshefeeℎrrr𝑝meidasltbthyrearnhasedfaeiatrtticrooanne,ffisfReceri𝑝erenidts,bt𝜇hyeicsoRtnhevyeenmcotiloodlnsec,nuℎulrameribsvetihsr,ceo𝜆hs𝑓ietaiyst, 𝑈=(𝑈𝑈𝑈123)=(((((( 𝜑𝜌𝑔𝑢𝑔𝐴𝑝 )))))). (12) 𝑇𝑔isthegastemperature,and𝛾isthespecificheatratio.𝑇ps 𝑈4 (( (1−𝜑)𝜌𝑝𝑢𝑝𝐴 )) isthesolidparticlesurfacetemperatureanditwascalculated 𝑈 ( ) 5 as 𝑢2 𝑔 𝜑𝜌 (𝑒 + )𝐴 𝑔 𝑔 2 𝑑𝑇 2𝑞√𝑎 (√𝑡+𝛿𝑡−√𝑡) ( ) ps = 𝑝 , (8) 𝑑𝑡 𝜆 √𝜋 𝛿𝑡 𝑝 Andthecomponentsof𝐸arethefluxfunctions: where𝑎𝑝 istheaccelerationofpropellantparticlesand𝜆𝑝 is 𝜑𝜌 𝑢 𝐴 thecoefficientofconductivity. 𝑔 𝑔 The Noble-Abel equation of state for the gas phase (1−𝜑)𝜌 𝑢 𝐴 mixture was adopted in this formulationto account for the 𝐸 ( 𝑝 𝑝 ) 1 ( ) nonidealbehaviorofthegasphase: 𝐸=(𝐸𝐸23)=(((( 𝜑𝜌𝑔𝑢𝑔2𝐴 )))). (13) 𝑝= 𝑅𝑇𝑔 , (9) 𝐸𝐸4 ((( (1−𝜑)(𝜌𝑝𝑢𝑝2 +𝑅𝑝)𝐴 ))) (1/𝜌 −𝛼) 5 𝑔 𝑢2 𝑝 𝑔 𝜑𝜌 𝑢 (𝑒 + + )𝐴 where𝑅isthegasconstantand𝛼isthegascovolume. ( 𝑔 𝑔 𝑔 2 𝜌𝑔 ) 4 AdvancesinMechanicalEngineering Andthecomponentsof𝑆arethesourcetermfunctions: 𝑚̇ 𝐴+∑𝑚̇ 𝐴 𝑐 ign −𝑚̇ 𝐴 𝑆 ( 𝑐 ) 1 ( ) 𝑆 ( ) 2 ( −𝑓𝐴+𝑚̇ 𝑢 𝐴+∑𝑚̇ 𝑢 𝐴−(𝜑𝐴)∇𝑝 ) 𝑆=(𝑆3)=(( 𝑠 𝑐 𝑝 ign ign )). (14) 𝑆 ( ) 4 ( 𝑓𝐴−𝑚̇ 𝑢 𝐴−(1−𝜑)𝐴∇𝑝 ) 𝑆 ( 𝑠 𝑐 𝑝 ) 5 𝑝 𝑢 ⋅𝑢 𝜕(𝐴𝜑) −𝑄 𝐴−𝑓𝑢 𝐴+𝑚̇ 𝐴(𝑒 + + 𝑝 𝑝)+∑𝑚̇ 𝐻 𝐴−𝑝 𝑝 𝑠 𝑝 𝑐 𝑝 𝜌 2 ign ign 𝜕𝑡 ( 𝑝 ) Thenonlinearhyperbolicsystemofdifferentialequationsof wheretheweightingfactor,𝑘,haslimitedvalueswhichcannot theestablished two-phasereactiveflowmodel(11)issolved betoosmalltopreventresultsfluctuations. using MacCormack technique which is an explicit finite Thenecessaryconditionforconvergenceofthepresented differencemethodwithsecond-orderaccuracyinbothspace numerical scheme in this study is the Courant-Friedrichs- and time via two steps, predictor and corrector [21]. At Lewy (CFL) stability criterion [32]. For our model this eachstepofthetimemarchingsolution,asmallamountof conditioniscalculatedas aaprtpifirocaiaclhviisscoapsiptylieisdatdodesmdaonodthatShheuflmuacntufialttieornesnihnanthceemperne-t 𝑐ΔΔ𝑥𝑡 ≤1, with 𝑐=max(󵄨󵄨󵄨󵄨󵄨𝑢𝑔󵄨󵄨󵄨󵄨󵄨+󵄨󵄨󵄨󵄨󵄨𝑢𝑝󵄨󵄨󵄨󵄨󵄨+|𝑎|), (20) dictedresultsateachtimestep[27–31]. The predictor step based on the right-hand side with where𝑐isthelargestvelocityinthesystemand𝑎isthesound forwarddifferenceis speed. 𝑈𝑡+Δ𝑡 =𝑈𝑡− Δ𝑡 (𝐸𝑡 −𝐸𝑡)+Δ𝑡𝑆𝑡+V𝑡, (15) 3.2. Adaptive Grid and Computational Domain. The finite 𝑖 𝑖 Δ𝑥 𝑖+1 𝑖 𝑖 𝑖 computationaldomainofthepresenttwo-phaseflowmodel wheretheartificialviscositytermV𝑡iscalculatedas isdividedinto102gridpointsinthechamberregionbefore 𝑖 the projectile starts to move. Then, after the base pressure V𝑖𝑡 = 𝐶𝑥𝑝󵄨󵄨󵄨󵄨𝑡𝑝𝑖𝑡+−1−2𝑝2𝑡𝑝+𝑖𝑡+𝑝𝑡𝑝𝑖𝑡−1󵄨󵄨󵄨󵄨(𝑈𝑖𝑡+1−2𝑈𝑖𝑡+𝑈𝑖𝑡−1), (16) rmeaocvhee.sThtheerefsotarret,tphreesesquureati(o3n0MofPma)ottihoenporfotjhecetiplreosjetacrtitlsetios 𝑖+1 𝑖 𝑖−1 essentialforrepresentingthecellextensionattheprojectile where 𝐶𝑥 is an arbitrary specified parameter with typical basewhichcanbewrittenas valuewithinrange(0.01–0.3). 𝑑V 𝑝𝐴=𝜑 𝑚 pr, (21) And the corrector step based on the right side with 1 pr 𝑑𝑡 rearwarddifferenceandsubstitutingthepredictedvaluesof thetimederivative𝑈𝑡+Δ𝑡attime𝑡+Δ𝑡is where𝑝ispressureattheprojectilebase,𝐴isthebarrelcross- 𝑖 sectionalarea,𝜑1isthecoefficientofsecondarywork(related 𝑈𝑡+Δ𝑡 = 1[𝑈𝑡+𝑈𝑡+Δ𝑡− Δ𝑡 (𝐸𝑡+Δ𝑡−𝐸𝑡+Δ𝑡)+Δ𝑡𝑆𝑡+Δ𝑡] to each gun system), 𝑚pr is the projectile mass, and Vpr is 𝑖 2 𝑖 𝑖 Δ𝑥 𝑖 𝑖−1 𝑖 the projectile velocity. At the moment when the projectile startstomove,thedisplacementoftheprojectileintheaxial +V𝑡+Δ𝑡, directioncanbewrittenas 𝑖 (17) 𝑥𝑗𝑛+1 =𝑥𝑗𝑛+VprΔ𝑡. (22) where V𝑡+Δ𝑡 is the calculated artificial viscosity using the 𝑖 At that time, the last mesh cell of the computational predictedvaluesasfollows: domain begins to expand. To overcome the problem of V𝑡+Δ𝑡 = 𝐶𝑥󵄨󵄨󵄨󵄨󵄨󵄨𝑃𝑡𝑖++1Δ𝑡−2𝑃𝑡𝑖+Δ𝑡+𝑃𝑡𝑖−+1Δ𝑡󵄨󵄨󵄨󵄨󵄨󵄨 disyanpapmliiecdehxperaenisni.oAnsotfhtehipsrcoejellc,tailegrmidovaedsa,ptthaetiolenngatlghoorifththme 𝑖 𝑃𝑡+Δ𝑡−2𝑃𝑡+Δ𝑡+𝑃𝑡+Δ𝑡 last mesh cell of the computational domain Δ𝑥2 will also 𝑖+1 𝑖 𝑖−1 (18) increaseasshowninFigure2andthegridwillbeself-adapted 𝑡+Δ𝑡 𝑡+Δ𝑡 𝑡+Δ𝑡 accordingtothesetwoconditions. ×(𝑈 −2𝑈 +𝑈 ). 𝑖+1 𝑖 𝑖−1 If Δ𝑥2 ≤ 1.5Δ𝑥, the number of the mesh cells is still constant but the value of Δ𝑥1 is changed to be equal to the TheShumanfilterapproachforthecalculatedconserved valueofΔ𝑥2. variablescanbewrittenas If Δ𝑥2 ≤ 1.5Δ𝑥, a new mesh cell will be added and 𝑈𝑖𝑡 = 𝑘+11(𝑈𝑖𝑡−1+𝑘𝑈𝑖𝑡+𝑈𝑖𝑡+1), (19) tohfeΔv𝑥a2lu−eΔo𝑥f.Δ𝑥1 will be calculated to be equal to the value AdvancesinMechanicalEngineering 5 j−2 j−1 Δx j At the start pressure value, the projectile starts to move 2 tn+1 whiletheleftboundaryisstillstationary.Thetwo-phaseflow confinedinthechamberbehindtheprojectilestartstomove asthepressureandchambervolumeareincreasing.MCVC Trajectory of method is established to handle the computational domain projectile motion attherightboundary.Applyingthemassconservationonthe tn controlvolumeofthelastmeshcellbehindtheprojectilebase Δx asshowninFigure2,theporosityofpoint𝑗attime𝑡𝑛+1can j−2 j−1 1 j becalculatedviathefollowingprocedure. Figure2:Schematicofmovingcontrolvolume. Thesolidphasemassesinsidethecontrolvolumeattimes 𝑡𝑛and𝑡𝑛+1arecalculatedas Table1:Inputdatausedinnumericalcomputation. 𝑚𝑝𝑛 =[𝐴𝜌𝑝(1−𝜑)]𝑛𝑗−1/2(𝑥𝑗𝑛−𝑥𝑗𝑛−1), (24) Parameter Value Geometry 𝑚𝑝𝑛+1 =[𝐴𝜌𝑝(1−𝜑)]𝑛𝑗−+11/2(𝑥𝑗𝑛+1−𝑥𝑗𝑛−+11). (25) Guncaliber(m) 0.130 Barrellength(m) 6.29 Themassofsolidphasethatflowsintothesectionarea𝐴is Chamberlength(m) 0.7 givenby Chambervolume(m3) 0.01366 𝑛+1/2 Projectilemass(Kg) 33.4 Δ𝑚𝑝 =[𝐴𝜌𝑝(1−𝜑)𝑢𝑝]𝑗−1/2Δ𝑡. (26) Igniterlength(m) 0.5 Igniterdiameter(m) 0.16 The burnet mass of solid phase from the control volume Numberofholesoftheigniter 60 duringtimeΔ𝑡is Holediameter(m) 0.004 Physicalproperties Δ𝑚̇ =−𝐴𝑚̇𝑛(𝑥𝑛−𝑥𝑛 )Δ𝑡. (27) br 𝑐 𝑗 𝑗−1 Blackpowdermass(Kg) 0.08 Propellantchargemass(Kg) 10.6 Then, the mass of the solid phase in the control volume at Propellantcovolume(m3/kg) 0.001 time𝑡𝑛+Δ𝑡canbegivenas Propellantdensity(kg/m3) 1600 PPrrooppeellllaannttfigonrciteio(Jn/ktegm) perature(K) 906510500 𝑚𝑝𝑛+1 =𝑚𝑝𝑛 +Δ𝑚𝑝+Δ𝑚̇br. (28) Propellantgeometry Cylindrical In the Eulerian coordinate system, the next relation can be Initialporosity 0.56 deduced: Startpressure(MPa) 30 Burningratecoefficient 1.257∗10−8 𝑥𝑗𝑛−+11 =𝑥𝑗𝑛−1. (29) Burningrateexponent 0.83 Finally,from(25)and(29),theporositycanbeexpressedas 3.3.StationaryandMovingBoundaryConditions. Inthisone- 𝑚𝑛+1 dimensional two-phase flow model, a criterion of reflective 𝜑𝑛+1 =1− 𝑝 . boundary condition is utilized at the left (breech position) 𝑗−1/2 𝐴𝜌 (𝑥𝑛+1−𝑥𝑛 ) (30) 𝑝 𝑗 𝑗−1 andright(projectilebase)boundariesbeforetheshotstarts tomove.Figure3representstwofictitiouspointsatthegrid points 𝑖 = 0 and 𝑖 = 𝑁 + 1, respectively. These points are But requiredinthecalculationsatthefixedboundariesandthey 1 are located outside the left and right physical domains. The 𝜑𝑗𝑛−+11/2 = 2(𝜑𝑗𝑛−+11+𝜑𝑗𝑛+1). (31) primitivevariablesofbothphasesarecalculatedatthefixed boundaryas Thus,anexpressionfortheporosityofpoint𝑗atthetime𝑡𝑛+Δ𝑡 canbepresentedas 𝑢 =−𝑢 , 𝑢=(𝑢 ,𝑢 ), 0 1 𝑔 𝑝 𝑞 =𝑞 , 𝑞=(𝜌 ,𝑝,𝜑,𝑇), (23) 𝜑𝑗𝑛+1 =2𝜑𝑗𝑛−+11/2−𝜑𝑗𝑛−+11. (32) 0 1 𝑔 where𝑢isthevelocityvectorforbothphasesand𝑞isavector Applyingthesamepreviousstepsusingenergyandmomen- representing the other primitive variables of the flow (gas tum conservation equations, the remaining primitive flow density,pressure,porosity,andtemperature). variables(𝑢𝑔𝑛+1,𝑢𝑝𝑛+1,𝜌𝑔𝑛+1,and𝑒𝑔𝑛+1)canbederived. 𝑗 𝑗 𝑗 𝑗 6 AdvancesinMechanicalEngineering Projectile base Breech position i=0 1 2 N N+1 Figure3:Schematicofcomputationaldomain. 4.ResultsandDiscussion downthebore.Astheprojectilemovesararefactionwaveis formedandtravelsintheoppositedirectiontowardsthegun 4.1.NumericalVerifications. Acommontestfortheaccuracy breech(firstrarefaction)duetothechambervolumeincrease of computational fluid dynamics codes, one-dimensional following the projectile motion. But the combustion rate at model introduced by G. A. Sod (shock tube) [22], is used the breech position is higher than the traveling velocity of to test the ability of MacCormack algorithm to solve the the rarefaction wave at that time; therefore a second shock IBVPforthesystemoffirst-order,nonlinearcoupledpartial waveisformedandtravelsagaintotheshotbasefollowedby differential equations with inhomogeneous term possessing the second rarefaction wave. Similarly, the third shock and shockwavebehavior.Thistestconsistsofaone-dimensional rarefactionwavesareformedandtravelbetweenthebreech Riemannproblemforatubeofunitlength−1 ≤ 𝑥 ≤ 1[33]. and the shot base. As the pressure increases, the projectile TheCFLnumberistakentobe0.7forstabilityrequirements velocity increases resulting in attenuation to the pressure of the solution and the final time is 𝑡 = 0.2. The initial wave strength. The chamber pressure reaches its maximum conditionsfortheleftandrightstatesat𝑡=0are atabout8.4msandthenstartstodecreasegraduallyuntilthe endoftheinteriorballisticscycle. 1.00, for 𝑥≤0.0, 𝜌(𝑥,0)={ 0.125, for 𝑥>0.0, 4.2.2.Two-PhaseTemperatureProfile. Figure6representsthe 1.00, for 𝑥≤0.0, temperature distribution of the gas phase and propellant 𝑝(𝑥,0)={0.10, for 𝑥>0.0, (33) particles (solid phase). It is shown from Figure 6(a) that thegastemperatureisgraduallyincreasedintheearlystage 0, for 𝑥≤0.0, ofcombustioncomparedtothepropellantparticlesthathave 𝑢(𝑥,0)={ amorerapidburningrate.Attimeabout8.6msthegastem- 0, for 𝑥>0.0. peraturereachesitsmaximumvalue.Alsoitisclearthatthe temperature distribution near the breech position is higher Figure4showsthecomputedresultsofthetestcompared thanthatbehindtheshotbase.Withtheprojectilemotionthe totheexactsolution.Itisclearfromthisfigurethatthereis gastemperatureslowlydecreases.Theignitionwavedirection agoodagreementbetweenthenumericallycalculatedresults ofpropagationthroughthepropellantchargebedaswellas andtheexactsolutionoftheEulersystemofequations. thewavefrontisclearlyrepresentedinFigure6(b).Theentire propellantchargebedistotallyignitedattimeabout3.25ms 4.2.ApplicationoftheModeltoaRealLargeCaliberNGGPS. asitpossessespropellantsurfacetemperatureofabout615K. The presented gas-solid reactive flow model in this work is applied to real 130mm naval gun launching a guided projectileutilizingpropellantchargewithignitionsystemas 4.2.3. Two-Phase Velocity Profile. The predicted velocity described schematically in Figure 1. The calculated results distributions of gas and solid phase during the interior of some interior ballistic parameters are compared to the ballistic cycle are shown in Figure 7. It is shown that there experimentaldata. Theinputdata forcomputationscarried arenegativevelocitiesinvent-holesregionintheearlystage outbythecodeisgiveninTable1. ofignitionattimesabout1.7msto4ms.Thecentralreason of these negative velocities is the tendency of gas phase combustionproductstopropagatetowardsthebreechandthe 4.2.1.PressureHistory. Figure5showsthecalculatedpressure projectilebaseduetopressuregradientinsidegunchamber. history during the interior ballistics process. As the jet Butregardingtheirhighinertia,thesolidphaseparticlesare of burned gases flows out of the igniter holes into the clearlyobservedtohavelowervelocitythanthatofgasphase. mainpropellantcharge,thepropellantaroundthevent-holes Thislagofvelocityisobviousinthenegativevelocityregion region starts to burn first and the pressure increases in the aswellasduringthewholeinteriorballisticscycle. gun chamber at about 2.4ms as shown in Figure 5(a). Due to the pressure gradient, the flame continues to propagate viatheunburnedregions.Atthattimeastrongshockwave 4.3. Experimental Validation. Due to complication and (first shock) occurs towards the direction of projectile base transient behavior of the interior ballistics process, many asshowninFigures5(c)and5(d).Byincreasingtheignited parameters cannot be measured experimentally except the area, the flame continues to propagate and pressure in the chamber pressure and the projectile velocity at the muzzle. chambercontinuouslyincreases.Atabout2.9msthepressure Table 2 represents the comparison between experimental reaches the start value and the projectile starts to move and computational results for maximum chamber pressure AdvancesinMechanicalEngineering 7 1.0 1.0 0.8 0.8 0.6 Pressure 0.6 Velocity 0.4 0.4 0.2 0.2 0.0 0.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 X(m) X(m) Exact Exact Test1 Test1 (a) (b) 1.0 0.8 y 0.6 nsit e D 0.4 0.2 −1.0 −0.5 0.0 0.5 1.0 X(m) Exact Test1 (c) Figure4:Comparisonbetweenthenumericalandexactsolutionin1DRiemannproblem. Table2:Comparisonbetweennumericalresultsandexperimentalresults. Ballisticparameter Experimentalresults Simulationresults Errorprobability Maximumchamberpressure(MPa) 319.00 319.45 0.14% Muzzlevelocity(m/s) 857 861.5 0.52% andprojectilemuzzlevelocity.Thevalidationshowsagood guidedprojectiles.Therefore,atwo-phaseflowmathematical agreementbetweenexperimentalandcomputationalresults. model for the solid granular propellant and its products of combustion inside large caliber NGGPS during interior 5.Conclusions ballisticcyclewasdeveloped.Theignitionofballpropellant intheignitertubeiscoupledwiththetwo-phaseflowmodel Themainobjectiveofthisresearchistopredicttheinterior ofthegunchamber.Theusednumericalmethodisconfirmed ballistics parameters such as chamber pressure and muzzle andvalidatedsuccessfullyusingSodshocktubetestinorder velocitytosustainanaccurateandsafelaunchingprocessfor to check its accuracy and aptitude to solve the complex 8 AdvancesinMechanicalEngineering 350 18 Breech Muzzle 75 32 320 300 16 288 107 250 14 128 128 256 160 Pressure (MPa) 121500000 Time (ms)118620222432152986917 252603171prTorjaejcetcilteo rmyo otfion 211129622048 Pressure (MPa) 96 50 4 64 43 64 2 11 32 0 0 0 2 4 6 8 10 12 14 16 18 0 1 2 3 4 5 6 Time (ms) Distance (m) Breech pressure Projectile base pressure (a) Pressurehistoryversustime (b) Pressureprofileon𝑥-𝑡diagram 320 30 First Second Third 8 Third Pressure Third 288 20 rarefactionrarefactionrarefaction shock decrease rarefaction 256 wave (MPa) 100 me (ms) 64 Ssehcoocnkd First raSreefcaocntidon 211296420 ure (MPa) Pressure −−1200 sFhiorsctk Ssehcoocnkd sThhoircdk Ti 2 shock rareFfiarcsttion 1962648 Press Pressure increase 32 −30 0 0 0 2 4 6 8 10 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Time (ms) Distance (m) (c) Pressurewavetimediagram (d) Initialpressurewavedistribution Figure5:Pressurehistoryduringinteriorballisticcycleinthe130mmNGGPS. Breech Muzzle 18 2450 4.0 615 1586 1514 16 1586 1370 2306 3.5 575 14 1658 1298 Time (ms) 112086 222130849002 65011877340 prTorjeacjetcilteo mryo otfion 2111074115348024 mperature (K) Time (ms) 3221....5050 456Wfroanvet 36Ip1grnoitpiaogna wti5oa9vn1e 544439516566 mperature (K) 4 1874 Igniter vent-holes 866 Te 1.0 376 Te 2 region 578 0.5 337 434 290 297 0 1 2 3 4 5 6 0.0 0.1 0.2 0.3 0.4 0.5 0.6 Distance (m) Distance (m) (a) Gasphasetemperature (b) Solidphasetemperature Figure6:Numericalresultsofthetwo-phasetemperaturedistributionon𝑥-𝑡diagram. AdvancesinMechanicalEngineering 9 1186 Bree1c5h6 412 572 636764 796M82u8zzle 876302 1186 Bre5e4ch162 227 400421 576280 72M4uzzle 871002 60 316 700 ms) 111420 124253248444 540604Trajectory of 643074468 city (m/s) ms) 111420 124005270 3476844645T7r2ajectory of 549864 ocity (m/s) Time ( 86 92 projectile motion 29220 hase velo Time ( 86 1176 projectile motion 327780 phase vel 4 −36 Igniterre vgeionnt-holes −−31664 Gas p 4 Igniter vent-holes 162 Solid region 2 −292 2−32 54 −420 −54 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 Distance (m) Distance (m) (a) Gasphasevelocity (b) Solidphasevelocity Figure7:Numericalresultsofthetwo-phasevelocitieson𝑥-𝑡diagram. two-phase flow problem. A grid adaptation algorithm was [5] J. Z. Ming, Interior Ballistics in Guns, Beijing Institute of developedandusedtodealwiththeprojectilemotionwith Technology,Beijing,China,2004. MCVC boundary approach. The main advantages of this [6] A.W.Horst,E.K.George,andP.S.Gough,“Newdirectionsin model are (1) predicting times and distributions of shock multiphaseflowinteriorballisticmodeling,”BRLReport3102, waveoccurrencethatcandisturbtheguidedprojectileand(2) USAARDC,BallisticResearchLaboratories,AberdeenProving estimatingaccurateandfastinteriorballisticparameters.The Ground,Md,USA,1990. performanceofa130mmNGGPSwascloselypredictedand [7] A.J.BudkaandJ.D.Knapton,“Pressurewavegenerationingun agoodagreementbetweenexperimentalandcomputational systems:asurvey,”Tech.Rep.BRL-MR-2567,BallisticResearch resultswasobtained. Laboratories,AberdeenProvingGround,Md,USA,1975. [8] A. W. Horst, I. W. May, and E. V. Clarke, “The missing link ConflictofInterests betweenpressurewavesandbreechblows,”Tech.Rep.ARBRL- MR-02849,USAARRADCOM,BallisticResearchLaboratory, The authors declare that there is no conflict of interests AberdeenProvingGround,Md,USA,1978. regardingthepublicationofthispaper. [9] I.W.MayandA.W.Horst,“Chargedesignconsiderationsand their effect on pressure waves in guns,” Tech. Rep. ARBRL- TR-02277, USA ARRADCOM, Ballistic Research Laboratory, Acknowledgments AberdeenProvingGround,Md,USA,1980. The research was supported by the Research Fund for [10] P. S. Gough and F. J. Zwarts, “Modeling heterogeneous two- phasereactingflow,”AIAAJournal,vol.17,no.1,pp.17–25,1979. the Natural Science Foundation of Jiangsu province (BK20131348) and Key Laboratory Fund (Grant no. [11] M.R.Baerand J.W.Nunziato, “Atwo-phasemixturetheory 9140C300103140C30001),China. forthedeflagration-to-detonationtransition(DDT)inreactive granular materials,” International Journal of Multiphase Flow, vol.12,no.6,pp.861–889,1986. References [12] C. R. Woodley, S. Billett, C. Lowe, W. Speares, and E. Toro, “TheFHIBSinternalballisticscode,”inProceedingsofthe22nd [1] M.M.Rashad,X.B.Zhang,andH.Elsadek,“Numericalsim- InternationalSymposiumonBallistics,pp.322–329,Vancouver, ulationofinteriorballisticsforlargecaliberguidedprojectile Canada,November2005. navalgun,”JournalofEngineeringandAppliedScience,vol.60, no.2,2013. [13] R. Acharya and K. Kuo, “Implementation of approximate [2] P.G.BaerandJ.M.Frankle,“Thesimulationofinteriorballistic riemannsolvertotwo-phaseflowsinmortarsystems,”Journal performanceofgunsbydigitalcomputerprogram,”BRLReport ofAppliedMechanics,vol.77,no.5,ArticleID051401,9pages, 1183,ARDC,BallisticResearchLaboratories,AberdeenProving 2010. Ground,Md,USA,1962. [14] C.ChengandX.Zhang,“Modelingofinteriorballisticgas-solid [3] K.D.FickieandJ.Grosh,“Atechniqueforcodeaugmentation,” flow using a coupled computational fluid dynamics-discrete Tech.Rep.BRL-MR-3622,USArmyBallisticResearchLabora- elementmethod,”JournalofAppliedMechanics,vol.80,no.3, tory,AberdeenProvingGround,Md,USA,1987. ArticleID031403,6pages,2013. [4] W.R.FredrickandS.R.Timothy,“Alumped-parameterinterior [15] P. S. Gough, “Initial development of core module of next ballistic computer code using the TTCP model,” BRL Report generationinteriorballisticmodelNGEN,”Tech.Rep.ARL-CR- 3710,ARDC,BallisticResearchLaboratories,AberdeenProving 234,USArmyResearchLaboratory,AberdeenProvingGround, Ground,Md,USA,1988. Md,USA,1995. 10 AdvancesinMechanicalEngineering [16] P.S.Gough,“Formulationofanext-generationinteriorballistic [33] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid code,”inProceedingsofthe28thJointArmyNavyNasaAirForce Dynamics: a Practical Introduction, Springer, New York, NY, Combustion Subcommittee Meeting,pp.321–337,SanAntonio, USA,3rdedition,2009. Tex,USA,November1991. [17] M.J.NuscaandP.S.Gough,“Numericalmodelofmultiphase flowsappliedtosolidpropellantcombustioningunsystems,”in Proceedingsofthe34thAIAA/ASME/SAE/ASEEJointPropulsion ConferenceandExhibit,Cleveland,Ohio,USA,July1998,AIAA paperno.98-3695. [18] Y.X.YuanandX.B.Zhang,MultiphaseHydrokineticFoundation of High Temperature and High Pressure, Harbin Institute of Technology,Harbin,China,2005. [19] C.MaandX.Zhang,“Simulationofcontaminationprevention for optical window in laser ignition systems of large-caliber guns,”JournalofAppliedMechanics,vol.78,no.5,ArticleID 051014,2011. [20] J.S.Jang,H.G.Sung,T.S.Roh,andD.W.Choi,“Numerical study on properties of interior ballistics according to solid propellant positions in chamber,” in Proceedings of the 26th InternationalSymposiumonBallistics,pp.721–730,Miami,Fla, USA,September2011. [21] J.D.Anderson,ComputationalFluidDynamics:theBasicsand Applications,McGraw-Hill,NewYork,NY,USA,1995. [22] G. A. Sod, “A survey of several finite difference methods for systemsofnonlinearhyperbolicconservationlaws,”Journalof ComputationalPhysics,vol.27,no.1,pp.1–31,1978. [23] S.G.Ahmed,“Anewalgorithmformovingboundaryproblems subjecttoperiodicboundaryconditions,”InternationalJournal ofNumericalMethodsforHeat&FluidFlow,vol.16,no.1,pp. 18–27,2006. [24] I.Demirdzˇic´andM.Peric´,“Finitevolumemethodforpredic- tion of fluid flow in arbitrarily shaped domains with moving boundaries,” International Journal for Numerical Methods in Fluids,vol.10,no.7,pp.771–790,1990. [25] A. van Dam and P. A. Zegeling, “A robust moving mesh finite volume method applied to 1D hyperbolic conservation lawsfrommagnetohydrodynamics,”JournalofComputational Physics,vol.216,no.2,pp.526–546,2006. [26] H.Krier,S.Rajan,andW.F.vanTassell,“Flamespreadingand combustioninpackedbedsofpropellantgrains,”AIAAJournal, vol.14,no.3,pp.301–309,1976. [27] K. Alexander and L. Yu, “New adaptive artificial viscosity methodforhyperbolicsystemsofconservationlaws,”Journal ofComputationalPhysics,vol.231,no.24,pp.8114–8132,2012. [28] S.KawaiandS.K.Lele,“Localizedartificialviscosityanddiffu- sivityschemeforcapturingdiscontinuitiesoncurvilinearand anisotropic meshes,” Center for Turbulence Research Annual ResearchBriefs,2007. [29] E.J.Caramana,M.J.Shashkov,andP.P.Whalen,“Formulations ofartificialviscosityformulti-dimensionalshockwavecompu- tations,”JournalofComputationalPhysics,vol.144,no.1,pp.70– 97,1998. [30] S. P. Nelson and M. L. Weible, “Three-dimensional Shuman filter,”JournalofAppliedMeteorology,vol.19,no.4,pp.464–469, 1980. [31] A.HartenandG.Zwas,“SwitchednumericalShumanfiltersfor shockcalculations,”JournalofEngineeringMathematics,vol.6, no.2,pp.207–216,1972. [32] R. Courant, K. O. Friedrichs, and H. Lewy, “On the partial differenceequationsofmathematicalphysics,”IBMJournalof ResearchandDevelopment,vol.11,pp.215–234,1964.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.