ebook img

Intelligent Processing Algorithms and Applications for GPS Positioning Data of Qinghai-Tibet Railway PDF

162 Pages·2019·7.862 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Intelligent Processing Algorithms and Applications for GPS Positioning Data of Qinghai-Tibet Railway

Dewang Chen Ruijun Cheng Intelligent Processing Algorithms and Applications for GPS Positioning Data of Qinghai-Tibet Railway Intelligent Processing Algorithms and Applications for GPS Positioning Data of Qinghai-Tibet Railway Dewang Chen Ruijun Cheng (cid:129) Intelligent Processing Algorithms and Applications for GPS Positioning Data of Qinghai-Tibet Railway 123 Dewang Chen Ruijun Cheng FuzhouUniversity SKLof Rail TrafficControl andSafety Fuzhou,China Beijing Jiaotong University Beijing,China ISBN978-3-662-58968-7 ISBN978-3-662-58970-0 (eBook) https://doi.org/10.1007/978-3-662-58970-0 JointlypublishedwithBeijingJiaotongUniversityPress,Beijing,China TheprintededitionisnotforsaleinMainlandofChina.CustomersfromMainlandofChinapleaseorder theprintbookfrom:BeijingJiaotongUniversityPress. ©BeijingJiaotongUniversityPressandSpringer-VerlagGmbHGermany,partofSpringerNature2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublishers,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublishers,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthis book are believed to be true and accurate at the date of publication. Neither the publishers nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publishers remain neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. This Springer imprint is published by the registered company Springer-Verlag GmbH, DE part of SpringerNature. Theregisteredcompanyaddressis:HeidelbergerPlatz3,14197Berlin,Germany Contents 1 Application of Satellite Positioning in Railway . . . . . . . . . . . . . . . . . 1 1.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Satellite Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Global Positioning System . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 GLONASS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.3 Beidou Satellite Navigation System (BDS) . . . . . . . . . . . . 5 1.2.4 Galileo Global Positioning System . . . . . . . . . . . . . . . . . . 8 1.3 Foreign Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Domestic Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5 Brief Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2 Qinghai–Tibet Railway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Permafrost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 The Harsh Environment of Tibetan Plateau . . . . . . . . . . . . . . . . . 23 2.4 Plateau Ecological Environment Protection . . . . . . . . . . . . . . . . . 26 2.5 The Development of the Qinghai–Tibet Railway . . . . . . . . . . . . . 30 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3 Incremental Train Control System of Qinghai–Tibet Railway . . . . . 35 3.1 Train Positioning Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 Communication Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2.1 GSM-R Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2.2 GSM-R Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3 Incremental Train Control System . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.1 ITCS Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3.2 The Components of ITCS . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3.3 The Operating Principles of ITCS. . . . . . . . . . . . . . . . . . . 43 3.3.4 System Reliability Analysis . . . . . . . . . . . . . . . . . . . . . . . 44 v vi Contents 3.4 Onboard Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.5 Emergency Strategy in Case of Failures. . . . . . . . . . . . . . . . . . . . 46 3.5.1 Failure Modes of Onboard Equipment . . . . . . . . . . . . . . . 46 3.5.2 Failure Modes of Wayside Equipment . . . . . . . . . . . . . . . 48 3.6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4 Key Scientific Problems Based on GPS Positioning System . . . . . . . 51 4.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.2 Analysis of Advantages and Disadvantages of Existing Positioning Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.2.1 Train Positioning Based on Query Balise . . . . . . . . . . . . . 55 4.2.2 Intelligent Localization Method by Using LS-SVM and the Online Sparse Optimization Approach. . . . . . . . . . 57 4.2.3 Intelligent Train Localization Method Based on ACO and Machine Learning Algorithms . . . . . . . . . . . . . . . . . . 70 4.2.4 Speed Measurement and Positioning of Multi-sensor Information Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.2.5 Satellite Navigation and Positioning . . . . . . . . . . . . . . . . . 77 4.3 GPS Positioning Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.3.1 Accuracy Requirement. . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.3.2 Real-Time Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.3.3 Economic Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.3.4 Interference Immunity Requirement . . . . . . . . . . . . . . . . . 82 4.4 Key Scientific Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.4.1 GPS Data Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.4.2 Error Data Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.4.3 Multiple GPS Trajectory Information Fusion. . . . . . . . . . . 84 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5 Error Data Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.2 Four Error Modes and Error Detection Algorithms. . . . . . . . . . . . 90 5.2.1 Four Error Patterns Based on Expert Knowledge. . . . . . . . 90 5.2.2 Four Error Detection Algorithms . . . . . . . . . . . . . . . . . . . 93 5.3 Integrated Error Detection Methods and Performance Index . . . . . 94 5.3.1 Integrated Error Detection Algorithm Based on Four Error Detection Algorithms . . . . . . . . . . . . . . . . . . . . . . . 94 5.3.2 Performance Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.4 Calculation Results and Analysis. . . . . . . . . . . . . . . . . . . . . . . . . 96 5.4.1 Set the Threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.4.2 Calculation Results and Performance Analysis. . . . . . . . . . 96 Contents vii 5.5 Brief Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6 Data Reduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.2 Reduction Model of GPS Data . . . . . . . . . . . . . . . . . . . . . . . . . . 104 6.3 Algorithm and Performance Index. . . . . . . . . . . . . . . . . . . . . . . . 105 6.3.1 Algorithm 1: The Reduction Algorithm Based on Prediction Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.3.2 Algorithm 2: The Reduction Algorithm Based on Dichotomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.3.3 Algorithm 3: The Reduction Algorithm Based on Breadth-First Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.4 A Case Study of the Qinghai–Tibet Railway Line . . . . . . . . . . . . 108 6.4.1 Data Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.4.2 Algorithm Results Analysis and Comparison. . . . . . . . . . . 109 6.4.3 Proof of 2d Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.5 Brief Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 7 Multiple GPS Track Information Fusion . . . . . . . . . . . . . . . . . . . . . 117 7.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 7.1.1 GPS Digital Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 7.1.2 Principal Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 7.2 The Mathematical Model of K Principal Curve Algorithm . . . . . . 120 7.3 Three Iterative Algorithms Based on Constraint K Principal Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 7.3.1 The Splitting Algorithm with Increasing Vertices. . . . . . . . 122 7.3.2 The Improved Split Optimization Algorithm-MPMopt . . . . 124 7.3.3 Division and Combination Optimization Algorithm-DCopt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 7.3.4 Error Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 7.3.5 Fitness Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 7.4 Practical Application of the Algorithm. . . . . . . . . . . . . . . . . . . . . 130 7.4.1 Test Set 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.4.2 Test Set 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 7.5 Brief Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 8 Object-Oriented Digital Track Map of Train Control System Based on Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 8.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 8.1.1 GPS Digital Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 8.2 Design of Digital Track Map . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 viii Contents 8.3 Overall Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 8.3.1 Spatial Database Design. . . . . . . . . . . . . . . . . . . . . . . . . . 141 8.3.2 Object Property Database. . . . . . . . . . . . . . . . . . . . . . . . . 143 8.3.3 Spatial Data and Object Attribute Data Match. . . . . . . . . . 144 8.4 The Digital Track Map System and Its Verification . . . . . . . . . . . 145 8.5 Application of Satellite Positioning Technology . . . . . . . . . . . . . . 147 8.6 Brief Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 9 Summary and Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 9.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Chapter 1 Application of Satellite Positioning in Railway 1.1 Overview Satellite navigation system is a satellite system that covers global space to realize positioning.Itdeterminesitspositionthroughelectronicreceiver,namelylongitude, latitude,andaltitude,andensuresthatthetimesignaltransmittedthroughsatellite broadcastingiswithintheerrorrangeof10m.Eachsatellitenavigationsystemcov- eringtheglobeisusuallycomposedofaconstellationof20–30satellites,spreading over several orbital planes. In the actual system, the number of satellites in each satellitenavigationsystemisnotidentical,butthesatelliteorbitaltiltisgreaterthan 50°, the orbital period is about 12 h, the height is about 20,000 km distance from thesurfaceoftheearth[1].Figure1.1showsaschematicofasatelliteinorbit.The satellitenavigationsystemhasthecharacteristicsofall-weatherpositioning,global positioning,three-dimensionalhigh-precisionpositioning,anddynamicnavigation, soithasawiderangeofapplications. Countries around the world, including the USA, Russia, the European Union, and China, are also working on their own navigation systems to avoid being held hostage.Atpresent,onlyAmericanglobalpositioningsystem(GPS)andtheformer GLONASSsystemofSovietUnionarethenavigationsystemthatcoverstheglobe. ChinaBeidousatellite(BDS)navigationsystemhasbeeninserviceinAsiaPacific at the end of 2012 and is expected to realize global coverage in 2020. European Union’s Galileo positioning system is scheduled to be fully operational in 2020 at theearliest.France,Japan,andIndiaarebuildingregionalnavigationsystems. ©BeijingJiaotongUniversityPressandSpringer-VerlagGmbHGermany, 1 partofSpringerNature2019 D.ChenandR.Cheng,IntelligentProcessingAlgorithmsandApplicationsforGPS PositioningDataofQinghai-TibetRailway,https://doi.org/10.1007/978-3-662-58970-0_1 2 1 ApplicationofSatellitePositioninginRailway Fig.1.1 Aschematicofasatelliteinorbit 1.2 SatelliteNavigation Theworld’sfourmajorsatellitenavigationsystemsaremadeupoftheUSGPSglobal positioningsystem,Russia’sGLONASS,ChineseBDSBeidousatellitenavigation system,andtheEuropeanUnion’sGalileonavigationsystem. 1.2.1 GlobalPositioningSystem Globalpositioningsystem(GPS)isanew-generationspacesatellitenavigationand positioningsystemofmedium-rangecircularorbitdevelopedandmaintainedbythe departmentofdefenseofUSAinthe1970s(Fig.1.2).Itsmainpurposeistoprovide real-time, all-weather, and global navigation services for three fields of sea, land, andair.Aftermorethan20yearsofresearchandexperiments,atacostof30billion dollars,24GPSsatelliteconstellationscovering98%oftheworldhadbeensetupby 1994. It can provide accurate positioning, speed measurement, and high-precision timestandardformostpartsoftheearth’ssurface.UsersonlyneedtohaveaGPS receiver to obtain the service without extra payment. The implementation of GPS planhasgonethroughthreestages[2,3]: The first stage is the stage of program demonstration and preliminary design. From1978to1979,fourexperimentalsatelliteswerelaunchedbyaGeminirocket

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.