Intelligent Mechatronic Systems Rochdi Merzouki Arun Kumar Samantaray • Pushparaj Mani Pathak • Belkacem Ould Bouamama Intelligent Mechatronic Systems Modeling, Control and Diagnosis 123 Rochdi Merzouki Pushparaj ManiPathak Ecole Polytechniquede Lille Department of Mechanical andIndustrial Université des Sciences etTechnologies Engineering de Lille(USTL) Indian Instituteof Technology VilleneuveD’Ascq CX Roorkee France India ArunKumar Samantaray Belkacem OuldBouamama Department of Mechanical Engineering Ecole Polytechniquede Lille Indian Instituteof Technology Université des Sciences etTechnologies Kharagpur de Lille(USTL) India VilleneuveD’Ascq CX France ISBN 978-1-4471-4627-8 ISBN 978-1-4471-4628-5 (eBook) DOI 10.1007/978-1-4471-4628-5 SpringerLondonHeidelbergNewYorkDordrecht LibraryofCongressControlNumber:2012950394 (cid:2)Springer-VerlagLondon2013 PhantomOmni(cid:2)Copyright2012Sensable.Allrightsreserved.RobuCAR&Robosoft(cid:2)ROBOSOFT 1985-2006KheperaIIrobot(cid:2)2002–2012K-TeamCorporation.AllRightsReserved.(cid:2)NumexiaS.A. Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyrightLawofthePublisher’slocation,initscurrentversion,andpermissionforusemustalways beobtainedfromSpringer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyright ClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) To Our families who have sacrificed a lot for this book - A.K.S., P.M.P., R.M. and B.O.B. Preface Mechatronics systems are, inherently, multidisciplinary. These systems are com- posed of interacting subsystems or parts from different engineering disciplines requiring an integration of mechanical engineering, electrical engineering, elec- tronics engineering, and control engineering. The interactions between different subsystems of a process are often very complex. Therefore, a concurrent design approach is needed for analysis of such systems. Moreover, design of proper control laws almost always requires a well-developed system model. Various books have been written so far to address the above-mentioned issues in mechatronic system design. Most of these books use abstract mathematical models instead of a structured representation suitable for multidisciplinary sys- tems. However, inouropinion, thechoice ofapropermodeling method, which is suitable for the analysis of the multidisciplinary system’s behavior, control syn- thesis and at the same time, clearly exposes the interplay between various sub- systems, is very important because it can greatly reduce the mechatronic system development time. This is the reason for using bond graph models in this book. Bond graphs were introduced as early as 1959 by Professor Henry Paynter of the Massachusetts Institute of Technology, Cambridge, USA. Since then, appli- cationofbondgraphstovariousdomainshasseenrapidgrowth.Bondgraph(BG) modelinghasalsobeensuccessfullyappliedtomodelvariousengineeringsystems. Furthermore, BG-based techniques have been developed for the analysis of structuralcontrol properties,sensorplacements,fault diagnosis, systeminversion, input–outputdecoupling,systemidentification,parameterestimation,modelorder reduction, robustness studies, and actuator sizing; to name a few. These recent developmentsinthefieldofsystemsandcontrolengineeringhavebeenintegrated in this book to embed machine intelligence into mechatronic systems. Oneaimofthisbookistopresentthein-depthstateoftheartofapplicationsof bond graph modeling to mechatronics systems. This book arose from our indi- vidual experiences in research and in teaching spanning more than two decades. vii viii Preface During ourprofessionallives we havehadthe opportunities tointeract personally with many leading personalities who have made significant contributions to the fields covered in this book. Consequently, those interactions have shaped our research directions and motivated us to write this book. From our teaching experiences as well as those of our colleagues, we understand that bond graph-based teachings of physical system modeling and model-based control are well appreciated by student communities because the methodologies are graphical, follow step-by-step approach to model building and more importantly, retain close relationship to the physical system so that mathe- matical complexities do not obscure the ability to analyze and reason intuitively. This book is written for the student and researchcommunities who are concerned with the mechatronic systems and control field. This book is a result of collaboration between a few Indian and French researchers. Individual chapters are either written by single researcher or two researchers. The first eight chapters of this book deal with general topics whereas the last six chapters deal with specialized applications. Chapter 1 written by Pathak introduces general concepts in mechatronics. Chapter 2 written by Ould BouamamaandSamantaraybuildsthefoundationofthisbook.Itintroducesbond graphmodelingtoolformulti-energydomainsystemmodeling.Chapter 3written by Pathak and Samantaray, deals with modeling of sensors, actuators, and elec- tronic circuits. Chapter 4 written by Samantaray discusses physical model-based control. Chapter 5 authored by Samantaray deals with modeling of various mechanical (rigid and flexible body) systems and micro-electro-mechanical sys- tems (MEMS). Chapter 6, again written by Samantaray, exclusively discusses modeling of vehicle mechatronic systems. Ould Bouamama and Samantaray introducemodel-basedfaultdiagnosisapproachintheChap. 7.Chapter 8,written byPathak,givesintroductiontoroboticmanipulators.Pathakthendiscussesrobust overwhelming control and impedance control in Chap. 9 and applies those to space robots in Chap. 10. Merzouki introduces the concept of intelligent trans- portation systems in Chap. 11 where model-based control and diagnosis has been integrated in real-life applications. In Chap. 12, Merzouki discusses telediagnosis applications. Finally, in Chap. 13, Samantaray discusses a vehicle simulator system as a virtual reality application. Compilation of this book has been coordinated by Samantaray. He thanks his coauthorsandresearchstudentsforextendingallthesupportheneeded.Samantaray especiallythankshisex-studentsDr.TarunKumarBeraandDr.P.Vijayforhelping with the content and figures. Pathak thanks his masters students Balkrishna V.Jagdale,PushpendraKumar,JatinMania,RishikeshRathee,GaneshKumarK., Rohit Khandekar, Sonam and Ph.D. students Amit Kumar, V. L. Krishnan, Preface ix HareshPatolia,MihirSutar,andMehulGorfortheirhelpindrawingthefiguresand proofreadingofthemanuscript.Wealsothankfullyacknowledgethecriticalinputs from Professors R. Bhattacharyya, A. Mukherjee, and R. Karmakar of IIT Kharagpur. Kharagpur, July 2012 Arun Kumar Samantaray Roorkee Pushparaj Mani Pathak Lille Rochdi Merzouki Belkacem Ould Bouamama Contents Part I Theory 1 Elements of Mechatronic Systems. . . . . . . . . . . . . . . . . . . . . . . . 3 1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Actuators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Input Signal Conditioning and Interfacing. . . . . . . . . . . . . . . 5 1.5 Digital Control Architecture. . . . . . . . . . . . . . . . . . . . . . . . . 5 1.6 Output Signal Conditioning and Interfacing. . . . . . . . . . . . . . 6 1.7 Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.8 Intelligent System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.9 Reconfigurable Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.10 Autonomous Supervisory Control. . . . . . . . . . . . . . . . . . . . . 7 1.11 Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.12 Knowledgebase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.13 Decision Support System. . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.14 Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.15 Fault, Failure, and Safety . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.16 Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.17 Examples of Mechatronic Systems. . . . . . . . . . . . . . . . . . . . 11 1.17.1 A Copy Machine . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.17.2 Walking Robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.18 Why Mechatronics System Simulation?. . . . . . . . . . . . . . . . . 13 1.19 Future of Mechatronics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 Bond Graph Modeling of Mechatronic Systems. . . . . . . . . . . . . . 15 2.1 Why Bond Graph for Mechatronics?. . . . . . . . . . . . . . . . . . . 15 2.2 Bond Graph for Modeling, Control, and Diagnosis. . . . . . . . . 16 2.3 Bond Graph Modeling Theory. . . . . . . . . . . . . . . . . . . . . . . 17 2.3.1 Concepts and Definitions. . . . . . . . . . . . . . . . . . . . . 17 xi xii Contents 2.3.2 Power as a Unified Coordinate System. . . . . . . . . . . 18 2.3.3 Power Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.4 Energy Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.5 Pseudo Bond Graph . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.6 Analogy of Energy Variables. . . . . . . . . . . . . . . . . . 23 2.4 Bond Graph Elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4.1 One-Port Passive Elements . . . . . . . . . . . . . . . . . . . 25 2.4.2 Active Elements. . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4.3 Junctions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.4.4 Two-Port Elements: Transformer and Gyrator . . . . . . 34 2.4.5 Information Bond. . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.5 Causality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.5.1 Sequential Causality Assignment Procedure (SCAP) . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.5.2 Derivative Causality and Its Implications . . . . . . . . . 46 2.5.3 Bicausal Bond Graphs. . . . . . . . . . . . . . . . . . . . . . . 49 2.6 Causal Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.6.1 Different Types of Causal Paths. . . . . . . . . . . . . . . . 50 2.6.2 Closed Causal Paths. . . . . . . . . . . . . . . . . . . . . . . . 52 2.6.3 Causal Path Gain . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.7 State-Space Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.7.1 State Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.7.2 Properties of State Variables . . . . . . . . . . . . . . . . . . 56 2.7.3 Steps for Equation Derivation . . . . . . . . . . . . . . . . . 57 2.7.4 Example: State-Space Equation of an Electrical System. . . . . . . . . . . . . . . . . . . . . . 57 2.7.5 Deriving Block Diagram Model from Bond Graph Model. . . . . . . . . . . . . . . . . . . . . 59 2.7.6 Model Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.8 The Art of Constructing Bond Graph Models . . . . . . . . . . . . 62 2.8.1 A Note on Power Directions . . . . . . . . . . . . . . . . . . 62 2.8.2 Simplification Rules. . . . . . . . . . . . . . . . . . . . . . . . 63 2.8.3 Bond Graphs for Electrical Systems . . . . . . . . . . . . . 65 2.8.4 Bond Graphs for Equivalent Networks . . . . . . . . . . . 68 2.8.5 Bond Graphs for Mechanical Systems. . . . . . . . . . . . 69 2.8.6 Bond Graphs for Multi-Energy Domain Systems . . . . 77 2.8.7 Nonlinear Models. . . . . . . . . . . . . . . . . . . . . . . . . . 79 2.9 Multiport Field Elements. . . . . . . . . . . . . . . . . . . . . . . . . . . 82 2.9.1 RS Element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 2.9.2 Multiport Elements in Process Engineering . . . . . . . . 83 2.9.3 C-Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 2.9.4 I-Field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 2.9.5 IC-Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 2.9.6 R-Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Contents xiii 2.9.7 Vector Junction . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 2.9.8 Multiport Transformers and Gyrators . . . . . . . . . . . . 93 2.9.9 Vector Bond Graph for Rigid-Body Dynamics. . . . . . 95 2.10 Bond Graph Modeling of Uncertain Systems. . . . . . . . . . . . . 97 2.10.1 Linear Fractional Transformation (LFT) . . . . . . . . . . 97 2.10.2 LFT Modeling of Bond Graph Elements. . . . . . . . . . 98 2.11 Automated Modeling: An Application Example. . . . . . . . . . . 100 2.11.1 Bond Graph Software. . . . . . . . . . . . . . . . . . . . . . . 100 2.11.2 Description of the System. . . . . . . . . . . . . . . . . . . . 102 2.11.3 Word Bond Graph . . . . . . . . . . . . . . . . . . . . . . . . . 102 2.11.4 Bond Graph Model. . . . . . . . . . . . . . . . . . . . . . . . . 103 2.11.5 Simulation Block Diagram . . . . . . . . . . . . . . . . . . . 104 2.11.6 State Equations and Simulation . . . . . . . . . . . . . . . . 105 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3 Modeling of Actuators, Sensors, and Electronic Circuits . . . . . . . 111 3.1 Models of Actuators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 3.1.1 Models of Mechanical Actuators . . . . . . . . . . . . . . . 112 3.1.2 Models of Electrical Actuators. . . . . . . . . . . . . . . . . 130 3.1.3 Models of Hydraulic Servo-Actuator. . . . . . . . . . . . . 151 3.1.4 Model of Pneumatic Actuators. . . . . . . . . . . . . . . . . 153 3.2 Modeling of Sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 3.2.1 Performance Terminology. . . . . . . . . . . . . . . . . . . . 163 3.2.2 Static and Dynamic Characteristics. . . . . . . . . . . . . . 164 3.2.3 Classification of Sensors. . . . . . . . . . . . . . . . . . . . . 164 3.2.4 Selection Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 165 3.2.5 Activation of Bonds . . . . . . . . . . . . . . . . . . . . . . . . 165 3.2.6 Power Associated with Activated Bonds. . . . . . . . . . 166 3.2.7 Modeling Mechatronic Systems with Activated Bonds . . . . . . . . . . . . . . . . . . . . . . . 166 3.2.8 Position Sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . 168 3.2.9 Velocity Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . 174 3.2.10 Acceleration Sensors. . . . . . . . . . . . . . . . . . . . . . . . 175 3.2.11 Force and Pressure Sensors . . . . . . . . . . . . . . . . . . . 177 3.3 Models of Electronic Circuit Components. . . . . . . . . . . . . . . 180 3.3.1 Signal Conditioning . . . . . . . . . . . . . . . . . . . . . . . . 180 3.3.2 Operational Amplifiers . . . . . . . . . . . . . . . . . . . . . . 181 3.3.3 Op-Amp Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . 187 3.3.4 Semiconductor Diode . . . . . . . . . . . . . . . . . . . . . . . 196 3.3.5 Transistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 3.4 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Description: