Intelligent Image and Video Interpretation: Algorithms and Applications Jing Tian Wuhan University of Science and Technology, China Li Chen Wuhan University of Science and Technology, China Managing Director: Lindsay Johnston Editorial Director: Joel Gamon Production Manager: Jennifer Yoder Publishing Systems Analyst: Adrienne Freeland Development Editor: Austin DeMarco Assistant Acquisitions Editor: Kayla Wolfe Typesetter: Lisandro Gonzalez Cover Design: Jason Mull Published in the United States of America by Information Science Reference (an imprint of IGI Global) 701 E. Chocolate Avenue Hershey PA 17033 Tel: 717-533-8845 Fax: 717-533-8661 E-mail: [email protected] Web site: http://www.igi-global.com Copyright © 2013 by IGI Global. All rights reserved. No part of this publication may be repro- duced, stored or distributed in any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher. Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark. Library of Congress Cataloging-in-Publication Data Intelligent image and video interpretation : algorithms and applications / Jing Tian and Li Chen, editors. pages cm Summary: “This book covers all aspects of image and video analysis from low-level early visions to high-level recognition, highlighting how these techniques have become applicable and will prove to be a valuable tool for researchers, professionals, and graduate students working or studying the fields of imaging and video processing”--Provided by publisher. Includes bibliographical references and index. ISBN 978-1-4666-3958-4 (hardcover) -- ISBN 978-1-4666-3959-1 (ebook) -- ISBN 978-1-4666- 3960-7 (print & perpetual access) 1. Image analysis--Research. 2. Image processing--Research. 3. Artificial intelligence--Research. 4. Digital images--Research. 5. Digital video--Research. I. Tian, Jing, 1979- II. Chen, Li, 1977- TA1637.I476 2013 621.36’7--dc23 2012051548 British Cataloguing in Publication Data A Cataloguing in Publication record for this book is available from the British Library. All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the authors, but not necessarily of the publisher. Editorial Advisory Board Lihong Ma, South China University of Technology, China Da Qi, University of Liverpool, UK Zhen Qian, Piedmont Heart Institute, USA Yongtao Wang, Peking University, China List of Reviewers Jingyu Hua, Zhejiang University of Technology, China Zhenyu Liu, Zaozhuang University, China Chen Wang, Nanyang Technological University, Singapore Zhe Wei, Nanyang Technological University, Singapore Xin Xu, Wuhan University of Technology, China Huanqiang Zeng, Chinese University of Hong Kong, Hong Kong Table of Contents Preface....................................................................................................................x Acknowledgment.................................................................................................xii Chapter 1 Intelligent.Video.Authentication:.Algorithms.and.Applications.............................1 Saurabh Upadhyay, Banaras Hindu University, India Shrikant Tiwari, Banaras Hindu University, India Sanjay Kumar Singh, Banaras Hindu University, India Chapter 2 Audio.and.Visual.Speech.Recognition.Recent.Trends.........................................42 Lee Hao Wei, Sunway University, Malaysia Seng Kah Phooi, Sunway University, Malaysia Ang Li-Minn, Edith Cowan University, Australia Chapter 3 A.Survey.of.Human.Activity.Interpretation.in.Image.and.Video.Sequence.........87 Xin Xu, Wuhan University of Science and Technology, China Li Chen, Wuhan University of Science and Technology, China Xiaolong Zhang, Wuhan University of Science and Technology, China Dongfang Chen, Wuhan University of Science and Technology, China Xiaoming Liu, Wuhan University of Science and Technology, China Xiaowei Fu, Wuhan University of Science and Technology, China Chapter 4 Review.of.Sparsity.Known.and.Blind.Sparsity.Greedy.Algorithm.for.. Compressed.Sensing...........................................................................................125 Chun-Yan Zeng, South China University of Technology, China Li-Hong Ma, South China University of Technology, China Ming-Hui Du, South China University of Technology, China Jing Tian, Wuhan University of Science and Technology, China Chapter 5 Adaptive.Edge-Preserving.Smoothing.and.Detail.Enhancement.for.H.263.. and.H.264.Video.................................................................................................139 Ji-Hye Kim, Sogang University, Korea Ji Won Lee, Sogang University, Korea Rae-Hong Park, Sogang University, Korea Min-Ho Park, PIXTREE, Korea Jae-Seob Shin, PIXTREE, Korea Chapter 6 Thresholding.Selection.Based.on.Fuzzy.Entropy.and.Bee.Colony.. Algorithm.for.Image.Segmentation....................................................................165 Yonghao Xiao, South China University of Technology, China & Foshan University, China Weiyu Yu, South China University of Technology, China & Soochow University, China Jing Tian, Wuhan University of Science and Technology, China Chapter 7 Image.Denoising.via.2-D.FIR.Filtering.Approach.............................................184 Jingyu Hua, Zhejiang University of Technology, China Wankun Kuang, Zhejiang University of Technology, China Chapter 8 Optimization.of.Image.Zernike.Moments.Shape.Feature.Based.on.. Evolutionary.Computation..................................................................................199 Maofu Liu, Wuhan University of Science and Technology, China Huijun Hu, Wuhan University of Science and Technology, China Chapter 9 Dimension.Reduction.of.Local.Manifold.Learning.Algorithm.for.. Hyperspectral.Image.Classification....................................................................217 Sheng Ding, Wuhan University, China & Wuhan University of Science and Technology, China Li Chen, Wuhan University of Science and Technology, China Jun Li, Wuhan University of Science and Technology, China Compilation of References...............................................................................232 About the Contributors....................................................................................255 Index...................................................................................................................262 Detailed Table of Contents Preface....................................................................................................................x Acknowledgment.................................................................................................xii Chapter 1 Intelligent.Video.Authentication:.Algorithms.and.Applications.............................1 Saurabh Upadhyay, Banaras Hindu University, India Shrikant Tiwari, Banaras Hindu University, India Sanjay Kumar Singh, Banaras Hindu University, India This.chapter.presents.an.intelligent.video.authentication.algorithm.using.a.support. vector.machine,.which.is.a.non-linear.classifier.and.its.applications..It.covers.both. kinds.of.tampering.attacks,.spatial.and.temporal. Chapter 2 Audio.and.Visual.Speech.Recognition.Recent.Trends.........................................42 Lee Hao Wei, Sunway University, Malaysia Seng Kah Phooi, Sunway University, Malaysia Ang Li-Minn, Edith Cowan University, Australia This.chapter.reviews.audio-visual.speech.recognition.processes.and.relevant.tech- niques.with.a.specific.focus.on.feature.extraction.and.classification.for.both.audio. and.visual.processing. Chapter 3 A.Survey.of.Human.Activity.Interpretation.in.Image.and.Video.Sequence.........87 Xin Xu, Wuhan University of Science and Technology, China Li Chen, Wuhan University of Science and Technology, China Xiaolong Zhang, Wuhan University of Science and Technology, China Dongfang Chen, Wuhan University of Science and Technology, China Xiaoming Liu, Wuhan University of Science and Technology, China Xiaowei Fu, Wuhan University of Science and Technology, China In.image.and.video.sequence.analysis,.human.activity.detection.and.recognition.is. critically.important..This.chapter.provides.a.comprehensive.review.of.the.recent. advances.in.human.activity.recognition..Various.methods.for.each.issue.are.discussed. to.examine.the.state.of.the.art. Chapter 4 Review.of.Sparsity.Known.and.Blind.Sparsity.Greedy.Algorithm.for.. Compressed.Sensing...........................................................................................125 Chun-Yan Zeng, South China University of Technology, China Li-Hong Ma, South China University of Technology, China Ming-Hui Du, South China University of Technology, China Jing Tian, Wuhan University of Science and Technology, China This.chapter.reviews.typical.sparsity.known.greedy.algorithms.as.well.as.emerg- ing.blind.sparsity.greedy.algorithms..Furthermore,.the.algorithms.are.analyzed. in.structured.diagrammatic.representation.and.compared.by.exact.reconstruction. probabilities.for.Gaussian.and.binary.sparse.signals. Chapter 5 Adaptive.Edge-Preserving.Smoothing.and.Detail.Enhancement.for.H.263.. and.H.264.Video.................................................................................................139 Ji-Hye Kim, Sogang University, Korea Ji Won Lee, Sogang University, Korea Rae-Hong Park, Sogang University, Korea Min-Ho Park, PIXTREE, Korea Jae-Seob Shin, PIXTREE, Korea This.chapter.proposes.a.pre-processing.method.of.motion-adaptive.edge-preserving. smoothing.and.detail.enhancement.for.H.263.and.H.264.video.in.which.temporal. and.spatial.edges.are.used.to.define.a.region.of.interest. Chapter 6 Thresholding.Selection.Based.on.Fuzzy.Entropy.and.Bee.Colony.. Algorithm.for.Image.Segmentation....................................................................165 Yonghao Xiao, South China University of Technology, China & Foshan University, China Weiyu Yu, South China University of Technology, China & Soochow University, China Jing Tian, Wuhan University of Science and Technology, China Image.thresholding.segmentation.based.on.Bee.Colony.Algorithm.(BCA).and.fuzzy. entropy.is.presented.in.this.chapter..The.fuzzy.entropy.function.is.simplified.within.a. single.parameter..The.BCA.is.applied.to.search.the.minimum.value.of.fuzzy.entropy. function.for.obtaining.the.optimal.image.threshold. Chapter 7 Image.Denoising.via.2-D.FIR.Filtering.Approach.............................................184 Jingyu Hua, Zhejiang University of Technology, China Wankun Kuang, Zhejiang University of Technology, China This.chapter.provides.a.comparative.study.of.the.conventional.lowpass.filtering.ap- proach,.then.proposes.an.improved.method.based.on.learning.method,.where.pixels. are.filtered.by.five.edge-oriented.filters,.respectively,.facilitated.to.their.edge.details.. Furthermore,.the.differential.evolution.particle.swarm.optimization.algorithm.is. exploited.to.refine.those.filters. Chapter 8 Optimization.of.Image.Zernike.Moments.Shape.Feature.Based.on.. Evolutionary.Computation..................................................................................199 Maofu Liu, Wuhan University of Science and Technology, China Huijun Hu, Wuhan University of Science and Technology, China The.image.shape.feature.can.be.described.by.the.image.Zernike.moments..This. chapter.pinpoints.that.the.high.dimension.image.Zernike.moments.shape.feature. vector.can.describe.more.details.of.the.original.image,.while.it.has.too.many.ele- ments.making.trouble.for.the.next.image.analysis.phases. Chapter 9 Dimension.Reduction.of.Local.Manifold.Learning.Algorithm.for.. Hyperspectral.Image.Classification....................................................................217 Sheng Ding, Wuhan University, China & Wuhan University of Science and Technology, China Li Chen, Wuhan University of Science and Technology, China Jun Li, Wuhan University of Science and Technology, China This.chapter.addresses.the.problems.in.hyperspectral.image.classification.by.the. methods.of.local.manifold.learning.methods..With.a.proper.selection.of.parameters. and.a.sufficient.number.of.features,.the.manifold.learning.methods.using.the.k- nearest.neighborhood.classification.results.produce.an.efficient.and.accurate.data. representation.that.yields.higher.classification.accuracies.than.conventional.linear. dimension.reduction.methods.for.the.hyperspectral.image. Compilation of References...............................................................................232 About the Contributors....................................................................................255 Index...................................................................................................................262