Integration and Cubature Methods A Geomathematically Oriented Course MONOGRAPHS AND RESEARCH NOTES IN MATHEMATICS Series Editors John A. Burns Thomas J. Tucker Miklos Bona Michael Ruzhansky Published Titles Actions and Invariants of Algebraic Groups, Second Edition, Walter Ferrer Santos and Alvaro Rittatore Analytical Methods for Kolmogorov Equations, Second Edition, Luca Lorenzi Application of Fuzzy Logic to Social Choice Theory, John N. Mordeson, Davender S. Malik and Terry D. Clark Blow-up Patterns for Higher-Order: Nonlinear Parabolic, Hyperbolic Dispersion and Schrödinger Equations, Victor A. Galaktionov, Enzo L. Mitidieri, and Stanislav Pohozaev Bounds for Determinants of Linear Operators and Their Applications, Michael Gil′ Complex Analysis: Conformal Inequalities and the Bieberbach Conjecture, Prem K. Kythe Computation with Linear Algebraic Groups, Willem Adriaan de Graaf Computational Aspects of Polynomial Identities: Volume l, Kemer’s Theorems, 2nd Edition Alexei Kanel-Belov, Yakov Karasik, and Louis Halle Rowen A Concise Introduction to Geometric Numerical Integration, Fernando Casas and Sergio Blanes Cremona Groups and Icosahedron, Ivan Cheltsov and Constantin Shramov Delay Differential Evolutions Subjected to Nonlocal Initial Conditions Monica-Dana Burlica˘, Mihai Necula, Daniela Roșu, and Ioan I. Vrabie Diagram Genus, Generators, and Applications, Alexander Stoimenow Difference Equations: Theory, Applications and Advanced Topics, Third Edition Ronald E. Mickens Dictionary of Inequalities, Second Edition, Peter Bullen Elements of Quasigroup Theory and Applications, Victor Shcherbacov Finite Element Methods for Eigenvalue Problems, Jiguang Sun and Aihui Zhou Integration and Cubature Methods: A Geomathematically Oriented Course, Willi Freeden and Martin Gutting Introduction to Abelian Model Structures and Gorenstein Homological Dimensions Marco A. Pérez Iterative Methods without Inversion, Anatoly Galperin Iterative Optimization in Inverse Problems, Charles L. Byrne Line Integral Methods for Conservative Problems, Luigi Brugnano and Felice Iavernaro Lineability: The Search for Linearity in Mathematics, Richard M. Aron, Luis Bernal González, Daniel M. Pellegrino, and Juan B. Seoane Sepúlveda Published Titles Continued Modeling and Inverse Problems in the Presence of Uncertainty, H. T. Banks, Shuhua Hu, and W. Clayton Thompson Monomial Algebras, Second Edition, Rafael H. Villarreal Noncommutative Deformation Theory, Eivind Eriksen, Olav Arnfinn Laudal, and Arvid Siqveland Nonlinear Functional Analysis in Banach Spaces and Banach Algebras: Fixed Point Theory Under Weak Topology for Nonlinear Operators and Block Operator Matrices with Applications, Aref Jeribi and Bilel Krichen Optimization and Differentiation, Simon Serovajsky Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, Vicenţiu D. Rădulescu and Dušan D. Repovš A Practical Guide to Geometric Regulation for Distributed Parameter Systems Eugenio Aulisa and David Gilliam Reconstruction from Integral Data, Victor Palamodov Signal Processing: A Mathematical Approach, Second Edition, Charles L. Byrne Sinusoids: Theory and Technological Applications, Prem K. Kythe Special Integrals of Gradshteyn and Ryzhik: the Proofs – Volume l, Victor H. Moll Special Integrals of Gradshteyn and Ryzhik: the Proofs – Volume ll, Victor H. Moll Spectral and Scattering Theory for Second-Order Partial Differential Operators, Kiyoshi Mochizuki Stochastic Cauchy Problems in Infinite Dimensions: Generalized and Regularized Solutions, Irina V. Melnikova Submanifolds and Holonomy, Second Edition, Jürgen Berndt, Sergio Console, and Carlos Enrique Olmos Symmetry and Quantum Mechanics, Scott Corry The Truth Value Algebra of Type-2 Fuzzy Sets: Order Convolutions of Functions on the Unit Interval, John Harding, Carol Walker, and Elbert Walker Variational-Hemivariational Inequalities with Applications, Mircea Sofonea and Stanislaw Migórski Willmore Energy and Willmore Conjecture, Magdalena D. Toda Forthcoming Titles Groups, Designs, and Linear Algebra, Donald L. Kreher Handbook of the Tutte Polynomial, Joanna Anthony Ellis-Monaghan and Iain Moffat Microlocal Analysis on Rˆn and on NonCompact Manifolds, Sandro Coriasco Practical Guide to Geometric Regulation for Distributed Parameter Systems, Eugenio Aulisa and David S. Gilliam MONOGRAPHS AND RESEARCH NOTES IN MATHEMATICS Integration and Cubature Methods A Geomathematically Oriented Course Willi Freeden Martin Gutting CRCPress Taylor&FrancisGroup 6000BrokenSoundParkwayNW,Suite300 BocaRaton,FL33487-2742 (cid:13)c 2018byTaylor&FrancisGroup,LLC CRCPressisanimprintofTaylor&FrancisGroup,anInformabusiness NoclaimtooriginalU.S.Governmentworks Printedonacid-freepaper InternationalStandardBookNumber-13:978-1-138-71882-1(Hardback) Thisbookcontainsinformationobtainedfromauthenticandhighlyregardedsources.Rea- sonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the conse- quences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has notbeenacknowledgedpleasewriteandletusknowsowemayrectifyinanyfuturereprint. ExceptaspermittedunderU.S.CopyrightLaw,nopartofthisbookmaybereprinted,re- produced,transmitted,orutilizedinanyformbyanyelectronic,mechanical,orothermeans, nowknownorhereafterinvented,includingphotocopying,microfilming,andrecording,orin anyinformationstorageorretrievalsystem,withoutwrittenpermissionfromthepublishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com(http://www.copyright.com/)orcontacttheCopyrightClearanceCen- ter, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not- for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system ofpaymenthasbeenarranged. Trademark Notice:Productorcorporatenamesmaybetrademarksorregisteredtrade- marks,andareusedonlyforidentificationandexplanationwithoutintenttoinfringe. ———————————————————————————————————————– Library of Congress Cataloging-in-Publication Data ———————————————————————————————————————– Names:Freeden,W.,author.|Gutting,Martin,1978-author. Title:Integrationandcubaturemethods:ageomathematicallyorientedcourse /WilliFreedenandMartinGutting. Description:BocaRaton:CRCPress,[2018]|Series:Chapman&Hall/CRC monographsandresearchnotesinmathematics|Includesbibliographical referencesandindex. Identifiers:LCCN2017026232|ISBN9781138718821(hardcover:alk.paper)| ISBN9781315195674(ebook)|ISBN9781351764766(ebook)|ISBN 9781351764759(ebook)|ISBN9781351764742(ebook) Subjects:LCSH:Cubatureformulas.|Numericalintegration.|Differential equations,Partial.|Earthsciences–Mathematics. Classification:LCCQA299.4.C83F742018|DDC515/.43–dc23 LCrecordavailableathttps://lccn.loc.gov/2017026232 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Contents Preface xiii About the Authors xvii List of Symbols xix Introduction xxi 0.1 Necessity of Quadrature . . . . . . . . . . . . . . . . . . . . . xxi 0.2 Historical Roots of the Book . . . . . . . . . . . . . . . . . . xxiii 0.3 Own Roots and Concept of the Book . . . . . . . . . . . . . xxix I Preparatory 1D-Integration 1 1 Algebraic Polynomial Integration 3 1.1 Interpolatory Integration Rules . . . . . . . . . . . . . . . . . 3 1.2 Peano’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Error Truncation . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Algebraic Spline Integration 11 2.1 Spline Integration Formulas . . . . . . . . . . . . . . . . . . . 11 2.2 Spline Interpolation . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Best Approximation and Spline Exact Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 Periodic Polynomial Integration 23 3.1 Integer Lattice and Periodic Polynomials . . . . . . . . . . . 23 3.2 Lattice Functions . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3 Euler Summation Formulas . . . . . . . . . . . . . . . . . . . 32 3.4 Euler Summation Formulas for Periodic Functions . . . . . . 35 4 Periodic Spline Integration 39 4.1 Best Approximate Integration in Sobolev Spaces . . . . . . . 39 4.2 Spline Lagrange Basis . . . . . . . . . . . . . . . . . . . . . . 42 vii viii Contents 4.3 Peano’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . 48 4.4 Best Approximation and Spline Exact Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.5 Smoothing Splines for Erroneous Data Points . . . . . . . . . 56 5 Trapezoidal Rules 63 5.1 Riemann Zeta Function and Lattice Function . . . . . . . . . 63 5.2 Classical Trapezoidal Sums for Finite Intervals . . . . . . . . 68 5.3 Romberg Integration . . . . . . . . . . . . . . . . . . . . . . 71 5.4 Poisson Summation Based Integration . . . . . . . . . . . . 73 5.5 Trapezoidal Sums over Dilated Lattices . . . . . . . . . . . . 79 6 Adaptive Trapezoidal Rules 83 6.1 Lattice Functions for Helmholtz Operators . . . . . . . . . . 84 6.2 Adaptive Trapezoidal Sums over Finite Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.3 Adaptive Poisson Summation Formula over Infinite Intervals 88 6.4 Adaptive Trapezoidal Sums over Infinite Intervals . . . . . . 92 6.5 Discontinuous Integrals of Hardy–Landau Type . . . . . . . 93 6.6 Periodic Polynomial Accuracy . . . . . . . . . . . . . . . . . 95 7 Legendre Polynomial Reflected Integration 99 7.1 Legendre Polynomials . . . . . . . . . . . . . . . . . . . . . . 99 7.2 Legendre (Green’s) Functions . . . . . . . . . . . . . . . . . . 105 7.3 Integral Formulas . . . . . . . . . . . . . . . . . . . . . . . . 108 8 Gaussian Integration 111 8.1 Gaussian Quadrature Formulas . . . . . . . . . . . . . . . . . 111 8.2 Adaptive Remainder Terms Involving Green’s Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 8.3 Convergence of Gaussian Quadrature . . . . . . . . . . . . . 118 II Integration on 2D-Spheres 121 9 Remainder Terms Involving Beltrami Operators 123 9.1 Spherical Framework . . . . . . . . . . . . . . . . . . . . . . 124 9.2 Sphere Functions Involving Beltrami Operators . . . . . . . . 133 9.3 Best Approximate Integration by Splines . . . . . . . . . . . 151 9.4 Integral Formulas under Boundary Conditions . . . . . . . . 158 9.5 Sphere Functions and Shannon Kernels . . . . . . . . . . . . 162 9.6 Peano’s Theorem Involving Beltrami Operators . . . . . . . 176 Contents ix 10 Integration Rules with Polynomial Accuracy 179 10.1 Lagrangian Integration . . . . . . . . . . . . . . . . . . . . . 179 10.2 Lebesgue Functions . . . . . . . . . . . . . . . . . . . . . . . 186 10.3 Spherical Geometry and Polynomial Cubature Rules . . . . . 192 10.4 Interpolatory Rules Based on Extremal Point Systems and Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 10.5 Non-Existence of Spherical Gaussian Rules . . . . . . . . . . 196 11 Latitude-Longitude Cubature 199 11.1 Associated Legendre Functions . . . . . . . . . . . . . . . . . 199 11.2 Legendre Spherical Harmonics . . . . . . . . . . . . . . . . . 204 11.3 Latitude-Longitude Integration . . . . . . . . . . . . . . . . . 206 12 Remainder Terms Involving Pseudodifferential Operators 215 12.1 Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 215 12.2 Pseudodifferential Operators . . . . . . . . . . . . . . . . . . 217 12.3 Reproducing Kernels and Remainder Terms . . . . . . . . . 222 12.4 Particular Types of Kernel Functions . . . . . . . . . . . . . 228 12.5 Locally Supported Kernels . . . . . . . . . . . . . . . . . . . 238 12.6 Zonal Function Exact Integration . . . . . . . . . . . . . . . 247 13 Spline Exact Integration 251 13.1 Spline Interpolation . . . . . . . . . . . . . . . . . . . . . . . 251 13.2 Peano’s Theorem in Terms of Pseudodifferential Operators . 256 13.3 Best Approximations . . . . . . . . . . . . . . . . . . . . . . 258 13.4 Spline Exact Integration Formulas . . . . . . . . . . . . . . . 260 14 Equidistributions and Discrepancy Methods 265 14.1 Equidistributions . . . . . . . . . . . . . . . . . . . . . . . . 265 14.2 Discrepancy Variants . . . . . . . . . . . . . . . . . . . . . . 267 14.3 Examples of Equidistributions on the Sphere . . . . . . . . . 271 14.4 Sobolev Space Based Generalized Discrepancy . . . . . . . . 279 14.5 Statistics for Equidistributions . . . . . . . . . . . . . . . . . 289 15 Multiscale Approximate Integration 301 15.1 Singular Integrals and Approximate Identities . . . . . . . . 301 15.2 Locally Supported Scaling Functions . . . . . . . . . . . . . . 306 15.3 Locally Supported Difference Wavelets . . . . . . . . . . . . 310 15.4 Integration for Large Equidistributed Data . . . . . . . . . . 313 15.5 Error Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 320