Table Of ContentIntegration and
Cubature Methods
A Geomathematically
Oriented Course
MONOGRAPHS AND RESEARCH NOTES IN MATHEMATICS
Series Editors
John A. Burns
Thomas J. Tucker
Miklos Bona
Michael Ruzhansky
Published Titles
Actions and Invariants of Algebraic Groups, Second Edition, Walter Ferrer Santos
and Alvaro Rittatore
Analytical Methods for Kolmogorov Equations, Second Edition, Luca Lorenzi
Application of Fuzzy Logic to Social Choice Theory, John N. Mordeson, Davender S. Malik
and Terry D. Clark
Blow-up Patterns for Higher-Order: Nonlinear Parabolic, Hyperbolic Dispersion and
Schrödinger Equations, Victor A. Galaktionov, Enzo L. Mitidieri, and Stanislav Pohozaev
Bounds for Determinants of Linear Operators and Their Applications, Michael Gil′
Complex Analysis: Conformal Inequalities and the Bieberbach Conjecture, Prem K. Kythe
Computation with Linear Algebraic Groups, Willem Adriaan de Graaf
Computational Aspects of Polynomial Identities: Volume l, Kemer’s Theorems, 2nd Edition
Alexei Kanel-Belov, Yakov Karasik, and Louis Halle Rowen
A Concise Introduction to Geometric Numerical Integration, Fernando Casas
and Sergio Blanes
Cremona Groups and Icosahedron, Ivan Cheltsov and Constantin Shramov
Delay Differential Evolutions Subjected to Nonlocal Initial Conditions
Monica-Dana Burlica˘, Mihai Necula, Daniela Roșu, and Ioan I. Vrabie
Diagram Genus, Generators, and Applications, Alexander Stoimenow
Difference Equations: Theory, Applications and Advanced Topics, Third Edition
Ronald E. Mickens
Dictionary of Inequalities, Second Edition, Peter Bullen
Elements of Quasigroup Theory and Applications, Victor Shcherbacov
Finite Element Methods for Eigenvalue Problems, Jiguang Sun and Aihui Zhou
Integration and Cubature Methods: A Geomathematically Oriented Course, Willi Freeden
and Martin Gutting
Introduction to Abelian Model Structures and Gorenstein Homological Dimensions
Marco A. Pérez
Iterative Methods without Inversion, Anatoly Galperin
Iterative Optimization in Inverse Problems, Charles L. Byrne
Line Integral Methods for Conservative Problems, Luigi Brugnano and Felice Iavernaro
Lineability: The Search for Linearity in Mathematics, Richard M. Aron,
Luis Bernal González, Daniel M. Pellegrino, and Juan B. Seoane Sepúlveda
Published Titles Continued
Modeling and Inverse Problems in the Presence of Uncertainty, H. T. Banks, Shuhua Hu,
and W. Clayton Thompson
Monomial Algebras, Second Edition, Rafael H. Villarreal
Noncommutative Deformation Theory, Eivind Eriksen, Olav Arnfinn Laudal,
and Arvid Siqveland
Nonlinear Functional Analysis in Banach Spaces and Banach Algebras: Fixed Point
Theory Under Weak Topology for Nonlinear Operators and Block Operator Matrices with
Applications, Aref Jeribi and Bilel Krichen
Optimization and Differentiation, Simon Serovajsky
Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative
Analysis, Vicenţiu D. Rădulescu and Dušan D. Repovš
A Practical Guide to Geometric Regulation for Distributed Parameter Systems
Eugenio Aulisa and David Gilliam
Reconstruction from Integral Data, Victor Palamodov
Signal Processing: A Mathematical Approach, Second Edition, Charles L. Byrne
Sinusoids: Theory and Technological Applications, Prem K. Kythe
Special Integrals of Gradshteyn and Ryzhik: the Proofs – Volume l, Victor H. Moll
Special Integrals of Gradshteyn and Ryzhik: the Proofs – Volume ll, Victor H. Moll
Spectral and Scattering Theory for Second-Order Partial Differential Operators,
Kiyoshi Mochizuki
Stochastic Cauchy Problems in Infinite Dimensions: Generalized and Regularized
Solutions, Irina V. Melnikova
Submanifolds and Holonomy, Second Edition, Jürgen Berndt, Sergio Console,
and Carlos Enrique Olmos
Symmetry and Quantum Mechanics, Scott Corry
The Truth Value Algebra of Type-2 Fuzzy Sets: Order Convolutions of Functions on the
Unit Interval, John Harding, Carol Walker, and Elbert Walker
Variational-Hemivariational Inequalities with Applications, Mircea Sofonea and
Stanislaw Migórski
Willmore Energy and Willmore Conjecture, Magdalena D. Toda
Forthcoming Titles
Groups, Designs, and Linear Algebra, Donald L. Kreher
Handbook of the Tutte Polynomial, Joanna Anthony Ellis-Monaghan and Iain Moffat
Microlocal Analysis on Rˆn and on NonCompact Manifolds, Sandro Coriasco
Practical Guide to Geometric Regulation for Distributed Parameter Systems,
Eugenio Aulisa and David S. Gilliam
MONOGRAPHS AND RESEARCH NOTES IN MATHEMATICS
Integration and
Cubature Methods
A Geomathematically
Oriented Course
Willi Freeden
Martin Gutting
CRCPress
Taylor&FrancisGroup
6000BrokenSoundParkwayNW,Suite300
BocaRaton,FL33487-2742
(cid:13)c 2018byTaylor&FrancisGroup,LLC
CRCPressisanimprintofTaylor&FrancisGroup,anInformabusiness
NoclaimtooriginalU.S.Governmentworks
Printedonacid-freepaper
InternationalStandardBookNumber-13:978-1-138-71882-1(Hardback)
Thisbookcontainsinformationobtainedfromauthenticandhighlyregardedsources.Rea-
sonable efforts have been made to publish reliable data and information, but the author
and publisher cannot assume responsibility for the validity of all materials or the conse-
quences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders
if permission to publish in this form has not been obtained. If any copyright material has
notbeenacknowledgedpleasewriteandletusknowsowemayrectifyinanyfuturereprint.
ExceptaspermittedunderU.S.CopyrightLaw,nopartofthisbookmaybereprinted,re-
produced,transmitted,orutilizedinanyformbyanyelectronic,mechanical,orothermeans,
nowknownorhereafterinvented,includingphotocopying,microfilming,andrecording,orin
anyinformationstorageorretrievalsystem,withoutwrittenpermissionfromthepublishers.
For permission to photocopy or use material electronically from this work, please access
www.copyright.com(http://www.copyright.com/)orcontacttheCopyrightClearanceCen-
ter, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-
for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system
ofpaymenthasbeenarranged.
Trademark Notice:Productorcorporatenamesmaybetrademarksorregisteredtrade-
marks,andareusedonlyforidentificationandexplanationwithoutintenttoinfringe.
———————————————————————————————————————–
Library of Congress Cataloging-in-Publication Data
———————————————————————————————————————–
Names:Freeden,W.,author.|Gutting,Martin,1978-author.
Title:Integrationandcubaturemethods:ageomathematicallyorientedcourse
/WilliFreedenandMartinGutting.
Description:BocaRaton:CRCPress,[2018]|Series:Chapman&Hall/CRC
monographsandresearchnotesinmathematics|Includesbibliographical
referencesandindex.
Identifiers:LCCN2017026232|ISBN9781138718821(hardcover:alk.paper)|
ISBN9781315195674(ebook)|ISBN9781351764766(ebook)|ISBN
9781351764759(ebook)|ISBN9781351764742(ebook)
Subjects:LCSH:Cubatureformulas.|Numericalintegration.|Differential
equations,Partial.|Earthsciences–Mathematics.
Classification:LCCQA299.4.C83F742018|DDC515/.43–dc23
LCrecordavailableathttps://lccn.loc.gov/2017026232
Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com
and the CRC Press Web site at
http://www.crcpress.com
Contents
Preface xiii
About the Authors xvii
List of Symbols xix
Introduction xxi
0.1 Necessity of Quadrature . . . . . . . . . . . . . . . . . . . . . xxi
0.2 Historical Roots of the Book . . . . . . . . . . . . . . . . . . xxiii
0.3 Own Roots and Concept of the Book . . . . . . . . . . . . . xxix
I Preparatory 1D-Integration 1
1 Algebraic Polynomial Integration 3
1.1 Interpolatory Integration Rules . . . . . . . . . . . . . . . . . 3
1.2 Peano’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Error Truncation . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Algebraic Spline Integration 11
2.1 Spline Integration Formulas . . . . . . . . . . . . . . . . . . . 11
2.2 Spline Interpolation . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Best Approximation and Spline Exact
Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3 Periodic Polynomial Integration 23
3.1 Integer Lattice and Periodic Polynomials . . . . . . . . . . . 23
3.2 Lattice Functions . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Euler Summation Formulas . . . . . . . . . . . . . . . . . . . 32
3.4 Euler Summation Formulas for Periodic Functions . . . . . . 35
4 Periodic Spline Integration 39
4.1 Best Approximate Integration in Sobolev Spaces . . . . . . . 39
4.2 Spline Lagrange Basis . . . . . . . . . . . . . . . . . . . . . . 42
vii
viii Contents
4.3 Peano’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Best Approximation and Spline Exact
Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5 Smoothing Splines for Erroneous Data Points . . . . . . . . . 56
5 Trapezoidal Rules 63
5.1 Riemann Zeta Function and Lattice Function . . . . . . . . . 63
5.2 Classical Trapezoidal Sums for Finite Intervals . . . . . . . . 68
5.3 Romberg Integration . . . . . . . . . . . . . . . . . . . . . . 71
5.4 Poisson Summation Based Integration . . . . . . . . . . . . 73
5.5 Trapezoidal Sums over Dilated Lattices . . . . . . . . . . . . 79
6 Adaptive Trapezoidal Rules 83
6.1 Lattice Functions for Helmholtz Operators . . . . . . . . . . 84
6.2 Adaptive Trapezoidal Sums over Finite
Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3 Adaptive Poisson Summation Formula over Infinite Intervals 88
6.4 Adaptive Trapezoidal Sums over Infinite Intervals . . . . . . 92
6.5 Discontinuous Integrals of Hardy–Landau Type . . . . . . . 93
6.6 Periodic Polynomial Accuracy . . . . . . . . . . . . . . . . . 95
7 Legendre Polynomial Reflected Integration 99
7.1 Legendre Polynomials . . . . . . . . . . . . . . . . . . . . . . 99
7.2 Legendre (Green’s) Functions . . . . . . . . . . . . . . . . . . 105
7.3 Integral Formulas . . . . . . . . . . . . . . . . . . . . . . . . 108
8 Gaussian Integration 111
8.1 Gaussian Quadrature Formulas . . . . . . . . . . . . . . . . . 111
8.2 Adaptive Remainder Terms Involving Green’s
Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.3 Convergence of Gaussian Quadrature . . . . . . . . . . . . . 118
II Integration on 2D-Spheres 121
9 Remainder Terms Involving Beltrami Operators 123
9.1 Spherical Framework . . . . . . . . . . . . . . . . . . . . . . 124
9.2 Sphere Functions Involving Beltrami Operators . . . . . . . . 133
9.3 Best Approximate Integration by Splines . . . . . . . . . . . 151
9.4 Integral Formulas under Boundary Conditions . . . . . . . . 158
9.5 Sphere Functions and Shannon Kernels . . . . . . . . . . . . 162
9.6 Peano’s Theorem Involving Beltrami Operators . . . . . . . 176
Contents ix
10 Integration Rules with Polynomial Accuracy 179
10.1 Lagrangian Integration . . . . . . . . . . . . . . . . . . . . . 179
10.2 Lebesgue Functions . . . . . . . . . . . . . . . . . . . . . . . 186
10.3 Spherical Geometry and Polynomial Cubature Rules . . . . . 192
10.4 Interpolatory Rules Based on Extremal Point Systems and
Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
10.5 Non-Existence of Spherical Gaussian Rules . . . . . . . . . . 196
11 Latitude-Longitude Cubature 199
11.1 Associated Legendre Functions . . . . . . . . . . . . . . . . . 199
11.2 Legendre Spherical Harmonics . . . . . . . . . . . . . . . . . 204
11.3 Latitude-Longitude Integration . . . . . . . . . . . . . . . . . 206
12 Remainder Terms Involving Pseudodifferential Operators 215
12.1 Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 215
12.2 Pseudodifferential Operators . . . . . . . . . . . . . . . . . . 217
12.3 Reproducing Kernels and Remainder Terms . . . . . . . . . 222
12.4 Particular Types of Kernel Functions . . . . . . . . . . . . . 228
12.5 Locally Supported Kernels . . . . . . . . . . . . . . . . . . . 238
12.6 Zonal Function Exact Integration . . . . . . . . . . . . . . . 247
13 Spline Exact Integration 251
13.1 Spline Interpolation . . . . . . . . . . . . . . . . . . . . . . . 251
13.2 Peano’s Theorem in Terms of Pseudodifferential Operators . 256
13.3 Best Approximations . . . . . . . . . . . . . . . . . . . . . . 258
13.4 Spline Exact Integration Formulas . . . . . . . . . . . . . . . 260
14 Equidistributions and Discrepancy Methods 265
14.1 Equidistributions . . . . . . . . . . . . . . . . . . . . . . . . 265
14.2 Discrepancy Variants . . . . . . . . . . . . . . . . . . . . . . 267
14.3 Examples of Equidistributions on the Sphere . . . . . . . . . 271
14.4 Sobolev Space Based Generalized Discrepancy . . . . . . . . 279
14.5 Statistics for Equidistributions . . . . . . . . . . . . . . . . . 289
15 Multiscale Approximate Integration 301
15.1 Singular Integrals and Approximate Identities . . . . . . . . 301
15.2 Locally Supported Scaling Functions . . . . . . . . . . . . . . 306
15.3 Locally Supported Difference Wavelets . . . . . . . . . . . . 310
15.4 Integration for Large Equidistributed Data . . . . . . . . . . 313
15.5 Error Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 320