ebook img

Integrated Nanodevice and Nanosystem Fabrication: Breakthroughs and Alternatives PDF

327 Pages·2017·40.12 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Integrated Nanodevice and Nanosystem Fabrication: Breakthroughs and Alternatives

INTEGRATED NANODEVICE AND NANOSYSTEM FABRICATION Pan Stanford Series on Intelligent Nanosystems Series Editor Simon Deleonibus Titles in the Series Published Forthcoming Vol. 1 Vol. 3 Intelligent Integrated Systems: Emerging Devices for Low-Power Devices, Technologies, and and High-Performance Architectures Nanosystems: Devices Physics, Simon Deleonibus, ed. New Functions, and Data Processing 2014 978-981-4411-42-4 (Hardcover) Simon Deleonibus, ed. 978-981-4411-43-1 (eBook) Vol. 2 Integrated Nanodevice and Nanosystem Fabrication: Materials, Techniques, and New Opportunities Simon Deleonibus, ed. 2017 978-981-4774-22-2 (Hardcover) 978-1-315-18125-7 (eBook) Pan Stanford Series on Renewable Energy — Volume 2 Pan Stanford Series on Intelligent Nanosystems Volume 2 INTEGRATED NANODEVICE AND NANOSYSTEM FABRICATION Materials, Techniques, and New Opportunities edited by editors Simon Deleonibus Preben Maegaard Anna Krenz Wolfgang Palz The Rise of Modern Wind Energy Wind Power for the World Publishedby PanStanfordPublishingPte.Ltd. PenthouseLevel,SuntecTower3 8TemasekBoulevard Singapore038988 Email:[email protected] Web:www.panstanford.com BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary. IntegratedNanodeviceandNanosystemFabrication:Materials, Techniques,andNewOpportunities Copyright(cid:2)c 2017PanStanfordPublishingPte.Ltd. Allrightsreserved.Thisbook,orpartsthereof,maynotbereproducedinany form or by any means, electronic or mechanical, including photocopying, recordingoranyinformationstorageandretrievalsystemnowknownorto beinvented,withoutwrittenpermissionfromthepublisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not requiredfromthepublisher. ISBN978-981-4774-22-2(Hardback) ISBN978-1-315-18125-7(eBook) PrintedintheUSA Contents Acknowledgments xi Introduction:WillNewMaterials,Fabrication,and ArchitectureSchemesEmergeforCMOSSurvival? xiii SimonDeleonibus PART I NANOFABRICATIONTECHNIQUESFOREMERGINGMATERIALSANDDEVICES 1 DeterministicSingle-IonImplantationMethodforQuantum ProcessinginSiliconandDiamond 3 TakahiroShinada,EnricoPrati,andTakashiTanii 1.1 Introduction:DopingChallengesandRecentProgress inSingle-AtomControl 4 1.2 DeterministicDopingMethod 6 1.2.1 Single-IonImplantationMethod 6 1.2.2 MolecularDoping 7 1.3 OrderedDopantArraysinSilicon 9 1.3.1 2DDopantArray 9 1.3.2 1DDopantArray 12 1.3.2.1 1Darrayofphosphorusdonors 12 1.3.2.2 1Darrayofarsenicdonors 15 1.4 Silicon-VacancyCenterinDiamond 16 1.5 Conclusion 19 2 GrapheneandTwo-DimensionalMaterials:Extending SiliconTechnologyfortheFuture? 27 AndreasBablich,SatenderKataria,VikramPassi, andMaxC.Lemme 2.1 Introduction 28 vi Contents 2.2 StructureandProperties 31 2.3 Synthesis 35 2.3.1 GrapheneCVD 35 2.3.2 TMD-CVD 40 2.4 Grapheneand2DMaterialsinElectronics 42 2.4.1 Graphene–MetalContacts 42 2.4.2 GrapheneTransistors 45 2.4.2.1 Digitalelectronics 46 2.4.2.2 Radiofrequency(RF)electronics 47 2.4.3 TMD-BasedElectronics 49 2.5 SensingPhotonsin2DMaterials:Physical Mechanisms 50 2.5.1 PhotovoltaicEffect(PVE) 52 2.5.2 Photo-thermoelectricEffect(PTE) 52 2.5.3 Photo-gating 54 2.5.4 StandingPlasmaWaveEffect (Dyakonov–Shur) 54 2.5.5 BolometricEffect 55 2.6 OptoelectronicApplicationsforGrapheneandRelated 2DMaterials 56 2.6.1 GraphenepnJunctions 57 2.6.2 2DTMD-BasedpnJunctions 59 2.7 SummaryandOutlook 61 3 NanofabricationUsingScanningProbeMicroscopes 75 VincentBouchiat 3.1 Introduction 76 3.2 GeneralPrinciplesofScanningProbeMicroscopes 76 3.3 GeneralPrinciplesofLocal-ProbeLithography Techniques 79 3.4 ClassificationoftheSurfaceStructurationTechniques UsingLocal-ProbeMicroscopes 81 3.4.1 ClassificationAccordingtothePhysicalNature oftheInteraction 82 3.4.2 ComparisonwithCompetingNanolithography Techniques 85 3.4.3 PerspectivesofIndustrialDevelopment 87 3.5 SPM-BasedLithographyTechniquesInvolvinga PolymerResistMask 90 Contents vii 3.5.1 ElectronBeamExposureofPolymerResistsby ScanningProbeMicroscopes 91 3.5.2 DevelopmentofChemicalResistsDedicatedto SPMLithography 92 3.5.3 NanopatterningbyMechanicalIndentation ofThinFilms 94 3.6 LithographyTechniquesbySPM-InducedLocal ChemicalModification 96 3.6.1 DirectFabricationofDevicesbyDeposition ofMatterundertheTipofanSTM 97 3.6.1.1 Atomicallyresolvedfabricationof devicesbylocaldepassivationof hydrogenatedsiliconunderanSTM 97 3.6.1.2 Localchemicalvapordeposition underSTM 98 3.6.2 LocalOxidationundertheTipofanAtomic ForceMicroscope 101 3.6.2.1 Applicationtothefabricationof siliconnanowiresandnanoFETs 104 3.6.2.2 Applicationtoultrathinmetallic filmoxidation 106 3.6.3 AdvantageofTipsTerminatedbyCarbon NanotubesforSPMLithography 111 3.7 “Passive”LithographyTechniques 113 3.7.1 Dip-PenLithography 113 3.7.2 AlignedMaterialDepositionbyMeansofan AFM-ControlledMechanicalMasking:The “NanostencilTechnique” 113 3.8 ConclusionsandPerspectives 115 PART II THESECONDLIFEANDNEWOPPORTUNITIESFORSILICONCMOS 4 High-κDielectricScalingforNano-CMOSTechnology 125 HeiWong,TakamasaKawanago,KuniyukiKakushima, andHiroshiIwai 4.1 Introduction 126 4.2 SomeFundamentalTheoreticalIssuesof High-κ/SiliconStack 129 viii Contents 4.2.1 TheSelectionofHighκandMetalGate 129 4.2.2 DielectricConstantandBandgap 131 4.2.3 CoordinationattheInterface 132 4.2.4 InterfaceDipolesandFermi-LevelPinning 133 4.3 Hf-BasedGateDielectrics 140 4.3.1 ThresholdVoltageControl 141 4.3.2 EffectiveMobility 147 4.3.3 Reliability 149 4.3.4 State-of-the-ArtHfO GateDielectrics 152 2 4.4 UltimateScalingwithRareEarthHighκ 154 4.4.1 InterfaceReactionsandGrowthKineticsof RareEarthOxide/SiDirectContact 155 4.4.2 MetalGateElectrodesandTheirInterface Properties 165 4.5 Summary 169 5 Nanometer-ScaleEpitaxialGrowthofGroupIV Semiconductors 181 JunichiMurota 5.1 Introduction 182 5.2 UltracleanLow-TemperatureLow-PressureCVD ProcessingforNanometer-ScaleEpitaxialGrowth 183 5.3 Langmuir-TypeFormulationofLow-Temperature Low-PressureCVDEpitaxialGrowth 186 5.3.1 SiandGeEpitaxialGrowth 186 5.3.2 Si1−xGexEpitaxialGrowth 190 5.3.3 InsituDoping 191 5.4 Atomic-OrderReactionofHydrideGasonSi(100), Si1−xGex(100),orGe(100)Surface 193 5.4.1 SurfaceReactionofSiH onGe(100) 195 4 5.4.2 SurfaceReactionofNH onSi(100), 3 Si1−xGex(100),orGe(100) 196 5.4.3 SurfaceReactionofPH onSi(100)or 3 Ge(100) 200 5.4.4 SurfaceReactionofB H onSi(100) 200 2 6 5.5 AtomicLayerDopinginSi,Si1−xGex,orGeEpitaxial Growth 200 5.5.1 CarbonAtomicLayerDoping 201 Contents ix 5.5.2 NitrogenAtomicLayerDoping 201 5.5.3 PhosphorusAtomicLayerDoping 204 5.5.4 BoronAtomicLayerDoping 206 5.6 ConclusionandFutureTrends 208 6 TCAD-BasedDesignTechnologyCo-optimizationfor VariabilityinNanoscaleSOIFinFETs 215 XingshengWang,ViharP.Georgiev,FikruAdamu-Lema, LouisGerrer,SalvatoreM.Amoroso,andAsenAsenov 6.1 Introduction 216 6.2 Test-BedTransistorsandtheTCADDevice Simulations 218 6.2.1 TransistorStructure 218 6.2.2 DeviceSimulations 219 6.2.2.1 Nominaltransistorsimulation 220 6.2.2.2 Globalvariabilitysimulation 223 6.2.2.3 Localvariabilitysimulation 225 6.3 HierarchicalVariability-AwareCompactModeling 229 6.3.1 CompactModelExtractions 229 6.3.2 CompactModelGeneration 232 6.4 CircuitSimulation 236 6.4.1 TheTest-BedSRAMCell 236 6.4.2 GlobalVariability 236 6.4.2.1 Deterministicimpact 236 6.4.2.2 MonteCarlosimulations 238 6.4.3 LocalVariability 242 6.4.3.1 Nominalcenter 243 6.4.3.2 Responsesurfaceoflocalstatistical variability 244 6.4.4 InterplaybetweenGlobalandLocalVariability 245 6.5 Conclusions 248 7 NanowiresforCMOSandDiversifications 253 ThomasErnstandSylvainBarraud 7.1 Introduction 254 7.2 FabricationofSemiconductorNanowires 255 7.2.1 Top-DownApproach 255 7.2.1.1 BasicprocessfornanowiresCMOS 256

Description:
Since its invention, the integrated circuit has necessitated new process modules and numerous architectural changes to improve application performances, power consumption, and cost reduction. Silicon CMOS is now well established to offer the integration of several tens of billions of devices on a ch
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.