ebook img

Integrated Methods for Optimization (Instructor's Solution Manual) (Solutions) PDF

118 Pages·2011·0.837 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Integrated Methods for Optimization (Instructor's Solution Manual) (Solutions)

Chapter 9 Corrections and Exercise Solutions Integrated Methods for Optimization, 2nd ed. J. N. Hooker Corrections • Page 241. P should be defined P = {(x,y) ≥ (0,0) | Ax+By ≥ b} in Exercises 6.10 and 6.11. • Page 259. Theorem 6.11 should state “...if and only if b ≤k and 0 a + a <a ” j j 0 jX<b0 Xj>k • Page 269. Replace v∗ on line 8 with v∗+f(x¯). Replace v∗ with v∗+f(x) i i i i in formulas (6.50) and (6.51). The last line of (6.51) should be ui(b−Dx)≤B +Mδ , i∈L i i 1 • Page 270. Replace 12 and 13 with 12+3x +4x and 13+3x +4x , 1 2 1 2 respectively, in the Benders cut and its linearized form. The solution of the second master problem is z = 12 with (x¯ ,x¯ ) = (0,0), not z = 101 1 2 4 with(x¯ ,x¯ )=(0,1).Becausetheprevioussubproblemhasoptimalvalue 1 2 12,thealgorithmterminateswithoptimalsolutionx=(0,0),y=(1,0,1). • Page 280. Replace the second min in the formulas for U′ and U′ with z x max. • Page 281. Replace “(6.70)–(6.72)” with “(6.73)–(6.75)” in Exercise 6.46. • Page 287. Replace “element” in line 1 of (6.77) with “alldiff.” • Page 308. The entry for b(3,b) in Table 6.3 should be 3, not 2. • Page 310. Replace r with r¯ in line 8 of Fig. 6.17. front(Q)j front(Q)j • Page 347. Replace ≫ with ≪ in Exercise 6.69. • Page 354. Replace e∗ =∞ with e∗ =0 in line 3 of Fig. 6.30. J J • Page388.ImmediatelyafterTheorem7.3,replace“C definesanoddhole” with “C defines an odd hole and contains all vertices of G.” • Page 390. Replace >1 with <1 in line 1 (Exercise 7.7). 575 576 9 Corrections and Exercise Solutions • Page 419. Replace d −d ≥−1 just above the figure with x −x ≥−1. 1 2 1 2 • Page 448. Replace “Let x be” with “Let x ≥0 be” in Exercise 7.50. j j • Page 469.Replacey≤x1 ≤4y with3y≤x1 ≤5y,andreplace3(1−y)≤ 2 2 x2 ≤ 5(1−y) with 1−y ≤ x2 ≤ 4(1−y), immediately below formula 1 1 (7.149). • Page 491. Replace “has no integrality gap” with “has an integrality gap” in Exercise 7.91. • Page 502. Add domain x ∈{6} to Exercise 7.102. 5 Exercise Solutions Chapter 2 Examples 2.1 The first round of domain propagation reduces the domains to D ={1,2}, D ={1,2}, D ={0,1,2} 1 2 3 The second round results in D ={2}, D ={2}, D ={0,1} 1 2 3 and the third round yields D ={2}, D ={2}, D ={0} 1 2 3 atwhichpointnofurtherreductionispossible.Theinequalitieshaveonly one feasible solution, x=(2,2,0). 2.2 The packings are on the left below, and the corresponding knapsack cuts are on the right: {1} x +x +x ≥5 2 3 4 {1,2} x +x ≥2 3 4 {1,3} x +x ≥2 2 4 {1,4} x +x ≥3 2 3 {2} x +x +x ≥5 1 3 4 {2,3} x +x ≥3 1 4 {2,3,4} x ≥1 1 {2,4} x +x ≥3 1 3 {3} x +x +x ≥6 1 2 4 {3,4} x +x ≥3 1 2 {4} x +x +x ≥6 1 2 3 9 Corrections and Exercise Solutions 577 The cuts corresponding to {2}, {3} and {4} were strengthened using bounds. 2.3 (a) First solve by branch and relax without bounds propagation. At the root node we get (x ,x )=(1/2,3). Branching on x , the left branch 1 2 1 adds x ≤ 0 to the relaxation and is infeasible. The right branch adds 1 x ≥ 1 and yields the integer solution x = (2,2). The search tree has 3 1 nodes. (b) Solving by bounds propagation alone, we obtain x ∈ {1,2,3} and 1 x ∈{2,3} from the constraint 2x +3x ≥10. Branching on x because 2 1 2 2 it has the smaller domain, we first set x = 2, and bounds propagation 2 yieldsx ∈{2,3}.Branchingonx ,wefirstsetx =2andgetthesolution 1 1 1 x=(2,2)withvalue14.Toseekabettersolutionweboundtheobjective function by 14−1: 3x +4x ≤ 13. This yields x ≤ 1, when in turn 1 2 1 yields x ≥4 when propagated through the constraint. Thus x ’s domain 2 2 becomesempty,andx=(2,2)mustbeoptimal.Thesearchtreeagainhas 3 nodes. (c)Augmentingbranchandrelaxwithpropagation,weaddtheconstraints x ≥ 1 and x ≥ 2 to the relaxation, which now has the solution x = 1 2 (1,7/3).Branchingfirstonx ≤2,therelaxationhastheintergalsolution 2 x = (2,2) with value 14. Propagation of the objective function bound 13 reveals that there can be no better solution. The search tree has only 2 nodes. 2.4 Consider the inequalities 2x ≤ 1, 2x +2x ≥ 1 with domains x ∈ 1 1 2 j {0,1}.Thefirstinequalityallowsreductionofx ’sdomainto{0}.Thisin 1 turnsallowsthesecondinequalitytoreducex ’sdomainto{1}.However, 2 theminimumofx subjecttothecontinuousrelaxationoftheinequalities 2 is 0, which results in no domain reduction for x . 2 2.5 Considertheinequalitiesx +x ≥1,x −x ≥0,againwithdomains 1 2 1 2 x ∈ {0,1}. Bounds propagation has no effect on the domains, but the j minimum of x subject to the continuous relaxation of the inequalities is 1 1/2, which allows the domain of x to be reduced to {1}. 1 2.6 Letx bethetimbershippedfromforestitosawmillj.Aconditional ij formulation is 578 9 Corrections and Exercise Solutions linear: min z+ c x ij ij ij X z =f +f +f 1A 1B 2B δ ⇒ x =d a 1A A    x +x =d conditional: δb ⇒xzx111=ABBf+=1Axd2B2+ABf=1BdA+B f2A   z =f +f +f logic:δa∨δb∨δδcc ⇒xx12AB+=1Axd2BA =2AdA 2B domains:x ≥0, all i,j, δ ,δ ,δ ∈{true, false} ij c b c A disjunctive formulation is Linear: min z+ c x ij ij ij X linear disjunction: z =f +f +f z =f +f +f 1A 1B 2B 1A 1B 2A x =d ∨ x +x =d 1A A 1A 2A A     x +x =d x =d 1B 2B B 1B B     z =f +f +f 1A 2A 2B ∨ x +x =d 1A 2A A   x =d 2B B   Domains:x ≥0, all i,j ij 2.7 The model is linear: min cx logic:¬δ ∨δ 1 3 δ δ 1 ∨ 2 A1x≥b1 A2x≥b2 linear disjunction: (cid:18) (cid:19) (cid:18) (cid:19)  A2xδ2≥b2 ∨ A3xδ3≥b3 (cid:18) (cid:19) (cid:18) (cid:19)  2.8 Letw betheguardatstationsonnightd,andlety bethestation sd id assigned to guard i on night d (0 or −1 if none). Because two guards are unassigned on a given night, we need two dummy stations to make the channeling constraints work. The model is 9 Corrections and Exercise Solutions 579 (w ) alldiff: ·d , all d (y ) ·d (cid:26) (cid:27) cardinality: (w |(1,2,3,4,5,6),(4,4,4,4,4,4),(5,5,5,5,5,5)) ·· nvalues:(w |1,3), s=1,2,3,4 s· nvalues:(y )|3,5), all i i· stretchCycle: (y |(1,2,3,4),(1,1,1,1),(1,1,1,1),P) i· w =i, all i linear: yidd , all d y =s, all s (cid:26) wsdd (cid:27) w ∈{1,...,6}, s=−1,0,1,2,3,4 sd domains: ,all d y ∈{−1,0,2,3,4}, i=1,...,6 (cid:26) id (cid:27) where P ={(i,j)|i,j ∈{−1,0,1,2,3,4}}\{(1,2),(2,1),(3,4),(4,3)}. 2.9 The patterns consistent with the stretch-cycle constraint are: y y y y y y y i1 i2 i3 i4 i5 i6 i7 0 2 2 0 1 0 0 0 2 2 0 1 0 1 0 2 2 0 1 1 0 0 2 2 0 1 1 1 2 2 2 0 1 0 0 2 2 2 0 1 0 2 2 2 2 0 1 1 0 3 3 3 0 1 0 0 3 3 3 0 1 1 0 3 3 3 0 1 0 3 Byscanningthecolumns,weseethatthereduceddomainsareasin(2.13). 2.10 Let J be the set of products. The model is n n min (h s +g x )+ c i it i it yt−1yt  i t=1 t=2 XX X linear: xssiit0===s0iq,,t−a,l1la+ill≥xti1t≥−1dit, all i,t≥1 ytt yt stretch:(yXi≥,i0,xℓii,tu=i)q,yta,llaill≥t1≥1 domains:x ,s ≥0, all i,t, y ∈J∪{0}, all t it it t whereP ={(i,j)|i,j ∈J∪{0}}.Settingy =0indicatesthatnoproduct t is manufactured in period t. We can suppose that q =0. The constraint 0 x =q ensuresthatx =0whenproductiisnotmanufacturedin i≥0 it yt it P 580 9 Corrections and Exercise Solutions periodt.Ifconditionalconstraintsareused,thisconstraintcanbereplaced by (i6=y )→(x =0), all i,t≥1 t it The expression q is replaced by z and ytt t element(y ,z |q ) t t ·t The expression c is replaced by w and yt−1yt t element((y ,y ),w |C) t−1 t t where C is the array of elements c and the element constraint picks out ij element (y ,y ) of C. t−1 t 2.11 Lety =−iindicatethatnoproductismanufacturedinperiodt,and t thelastproductmanufacturedisi.Thenc isthesetupcostforproduct |i|j j if y = i in the previous period. We can suppose q = 0 for i < 1. The t i model becomes n n min (h s +g x )+ c i it i it |yt−1|yt  i t=1 t=2 linear: xssiit0===Xs0iq,,tX−a,l1la+ill≥xti1t≥−1dit, all i,tX≥1 ytt yt stretch:(yX,ii,xℓii,tu=i)q,yta,llaill≥t1≥1 domains:x ,s ≥0, all i,t, y ∈J∪{−i|i∈J}, all t it it t where P ={(i,j)|i,j ∈J}∪{(i,−i),(−i,i),(−i,−i)|i∈J} 2.12 Let x be the quantity of electricity produced by plant i in period t. it One possible model is min q x +c i it iyi,t−1yit i,t  X linear: Xi xit ≥dt, all t y =1 y =0 it it ∨ , all i,t stretchCy(cid:18)clxe:it(≤yi·qi|(cid:19)(0,1(cid:18)),x(iℓt′i=,ℓi0)(cid:19),(n,n),P), all i domains:x ≥0, y ∈{0,1}, all i,t it it 9 Corrections and Exercise Solutions 581 where P = {(0,1),(1,0)} and y is identified with y . The expression i0 in c isinterpretedbyreplacingitwithz andaddingtheconstraints iyi,t−1yit it Element: ((y ,y ),C ,z ), all i,t i,t−1 it i it where Ci is the array of elements citt′. 2.13 Let x∈[L,U]. The relaxation for y=x2 is y≥2Lx−L2, y≥2Ux−U2 y≤(L+U)x−LU Therelaxationdescribestheregionabovethetangentsat(x,y)=(L,L2),(U,U2) and below the secant connecting these two points. A similar approach to y=ax yields the relaxation y≥aL+L(lna)(ax−aL), y≥aU +U(lna)(ax−aU) UaL−LaU aU −aL y≤ + x U −L U −L The factored relaxation for max ax1 +bx2 (x +2x )2 ≤1, L ≤x ≤U , j =1,2 1 2 j j j uses auxiliary variables y1 = ax1, y1 = bx2, y3 = x1+2x2, y4 = y32. The definition of y is already linear and needs no relaxation. The lower and 3 upperboundsony areL +2L andU +2U ,respectively.Sotherelaxed 3 1 2 1 2 problem is max y +y 1 2 y ≤1 4 y ≥2(L +2L )y −(L +2L )2, y ≥2(U +2U )y −(U +2U )2 4 1 2 3 1 2 4 1 2 3 1 2 y ≤(L +U +2L +2U )y −(L +2L )(U +2U ) 4 1 1 2 2 3 1 2 1 2 y =x +2x 3 1 2 y ≥aL1 +L (lna) ax1 −aL1 , y ≥aU1 +U (lna) ax1 −aU1 1 1 1 1 y ≤ aL1U1−aU1L1 + aU1 −a(cid:1)L1x (cid:1) 1 U −L U −L 1 1 1 1 1 y ≥bL2 +L (lnb) bx2 −bL2 , y ≥bU2 +U (lnb) bx2 −bU2 2 2 2 2 y ≤ bL2U2−bU2L2 + bU2 −a(cid:1)L2x (cid:1) 2 U −L U −L 2 2 2 2 2 L ≤x ≤U , j =1,2 j j j 2.14 To apply the method in the text, write the problem as 582 9 Corrections and Exercise Solutions max −x2−x2 1 2 −3x −x ≤−15 1 2 x ,x ≥0and integral 1 2 This yields the inequality v−L −3x −x ≥−15− 1 2 λ which must be satisfied by any optimal solution. Here, lower bound L is the value of the best known feasible solution x = (4,3), upper bound v the value of the solution x = (4.5,1.5) of the continuous relaxation, and Lagrangemultiplierλ=3.SoL=−25andv=−22.5.Wethereforehave −3x −x ≥−155 1 2 6 Because x ,x are integral, we can round up to obtain the inequality 1 2 −3x −x ≥−15, or 3x +x ≤15. We conclude that 3x +x =15. 1 2 1 2 1 2 2.15 Let D be the domain of y . If we assume each x ≥0, we have the yi i i valid knapsack cut max {A }x + A x ≥b ik i i i i∈I k∈Dyi i∈I′ X X 2.16 Let y be the type of fertilizer applied to plot i∈{1,...,m}, and let i x the amount of fertilizer. The problem can be written i max a x iyi i i X c x ≤U iyi i i X nvalues: ({y ,...,y }|1,K) 1 m domains:y ∈{types of fertilizer}, x ≥0, all i i i After unpacking in terms of indexed linear constraints, the problem is max z i indexedLinear: i  X elementCoeff(yi,xi,zi |ai1,...,aiK), all i  w ≤U i indexedLinear: i X elementCoeff(yi,xi,wi |ci1,...,ciK), all i nvalues: ({y ,...,y }|1,K) 1  m domains:y ∈{types of fertilizer}, x ≥0, all i i i 9 Corrections and Exercise Solutions 583 Table 9.1 Solution of Exercise 2.17. (t ,t ) J(t ,t ) Inequality 1 2 1 2 (0,7) {3,5} 3x +2x ≤7 A3 A5 (0,10) {1,2,3,4,5} x +3x +3x +4x +2x ≤10 A1 A2 A3 A4 A5 (2,7) {3,5} 3x +2x ≤5 A3 A5 (2,10) {3,4,5} 3x +4x +2x ≤8 A3 A4 A5 (4,7) {5} 2x ≤3 A5 (4,10) {5} 2x ≤6 A5 2.17 The inequalities appear in Table 9.1. All but the second and fourth are redundant because x ∈{0,1}. Aj 2.18 AminimummakespansolutiononmachineAis(s ,s ,s )=(0,2,5) 1 3 4 withmakespan9.Themakespanisthesameifjob1isremoved.Aminimal Benders cut is therefore M ≥9(x +x −1) A3 A4 2.19 The time horizon can be divided into intervals [t ,t ] for i = i i+1 1,...,m. Let x be the interval in which job j is scheduled. The prob- j lem becomes (x ,...,x ) 1 m s +p ≤d , all j subproblem:linear: j j j  (txj ≤sj ≤txj+1−pj, noOverlap((s |x =i) |(p |x =i)), all i j j j j domains:sj ∈[rj,∞], all j To solve the problem by logic-based Benders, let binary variable x = 1 ij when x =i. The master problem is j Benders cuts x ∈{0,1}, all i,j ij The subproblem on interval i is s +p ≤d , all j j j j linear: t ≤s ≤t −p , all j with x¯ =1  i j i+1 j ij noOverlap((sj|x¯ij =1) |(pj|x¯ij =1)) domains:s ∈[r ,∞], all j  j j 2.20 Let x = 1 when vehicle i is assigned to customer j. The master ij problem is 584 9 Corrections and Exercise Solutions linear: min x ij ij X Benders cuts domains:x ∈{0,1}, all i,j ij In subproblem i, let y be the customer that follows customer j in the ij routing of vehicle i, and let s be the time that the vehicle arrives at j customer j for delivery. Then the vehicle arrives at the next customer at times .Ifx¯isthesolutionofthecurrentmasterproblem,thesubproblem yij for vehicle i is e ≤s ≤d , all j with x¯ =1 j j j ij linear: s ≥s +p , all j with x¯ =1 (cid:26) yij j ijyij ij circuit(y ,...,y ) i1 ini domains:y ∈{1,...,n }, all j with x¯ =1 ij i ij where n = x¯ . i j ij P Chapter 3 Optimization Basics 3.1 Apply Gauss-Jordan elimination to 1110 2 x= 3101 3 (cid:20) (cid:21) (cid:20) (cid:21) to obtain 1 0 −1/2 1/2 1/2 x= 0 1 3/2 −1/2 3/2 (cid:20) (cid:21) (cid:20) (cid:21) So B−1 = −1/2 1/2 , u=c B−1 =[−7/2 −1/2], and r=c −uN = 3/2−1/2 B N [7/2 1/2].hSince r≥0i, the solution is optimal. 3.2 The basic solutions in each iteration are Iteration 1.(x ,x ,x )=(1,1,3),(r ,r )=(−3,2) 3 4 5 1 2 Iteration 2.(x ,x ,x )=(1,0,1),(r ,r )=(−4,3) 1 4 5 2 3 Iteration 3.(x ,x ,x )=(1,0,1),(r ,r )=(−1,4) 1 2 5 3 4 Iteration 4.(x ,x ,x )=(2,1,1),(r ,r )=(1,1) 1 2 3 4 5 The basic solutions in iterations 2 and 3 are degenerate. 3.3 The initial Phase I problem is

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.