ebook img

INTEGRAL observation of hard X-ray variability of the TeV binary LS5039 / RX J1826.2-1450 PDF

0.22 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview INTEGRAL observation of hard X-ray variability of the TeV binary LS5039 / RX J1826.2-1450

Astronomy&Astrophysicsmanuscriptno.hoffmann0812.0766 (cid:13)c ESO2009 January14,2009 LettertotheEditor INTEGRAL observation of hard X-ray variability of the TeV binary ⋆ LS 5039/RX J1826.2-1450 A.D.Hoffmann1,D.Klochkov1,A.Santangelo1,D.Horns2,A.Segreto3,R.Staubert1,G.Pu¨hlhofer1 1 KeplerZentrumfu¨rAstro-undTeilchenphysik,Institutfu¨rAstronomieundAstrophysik,UniversityofTu¨bingen,Sand1,72076 9 Tu¨bingen,Germany 0 2 Universita¨tHamburg,Institutfu¨rExperimentalphysik,Hamburg,Germany 0 3 INAFIFC-Pa,viaU.LaMalfa153,90146Palermo,Italy 2 n a ABSTRACT J Context.LS 5039/RX J1826.2-1450 is one of the few High Mass X-ray binary systems from which radio and high energy TeV 4 emissionhasbeenobserved.Moreover,variabilityoftheTeVemissionwithorbitalperiodwasdetected. 1 Aims.WeinvestigatethehardX-ray(25−200keV) spectralandtimingpropertiesofthesourcewiththemonitoringIBIS/ISGRI instrumenton-boardtheINTEGRALsatellite. ] h Methods.WepresenttheanalysisofINTEGRALobservationsforatotalofabout3Msecexposuretime,includingbothpublicdata p anddatafromtheKeyProgramme.Wesearchforfluxandspectralvariabilityrelatedtotheorbitalphase. - Results.Thesourceisobservedtoemitfrom25upto200keVandtheemissionisconcentratedaroundinferiorconjunction.Orbital o variabilityinthehardX-raybandisdetectedandestablishedtobeinphasewiththeorbitallymodulatedTeVemissionobservedwith r H.E.S.S.Forthisenergyrangewedetermineanaveragefluxfortheinferiorconjunctionphaseintervalof(3.54±2.30)×10−11 erg t s cm−2s−1,andafluxupperlimitforthesuperiorconjunctionphaseintervalof1.45×10−11ergcm−2s−1 (90%conf.levelrespectively). a ThespectrumfortheinferiorconjunctionphaseintervalfollowsapowerlawwithanindexΓ=2.0+0.2(90%conf.level). [ −0.2 Keywords.X-raybinaries;TeVemission;Microquasars 2 v 6 6 1. Introduction thesourcetobethecounterpartoftheunidentifiedhighenergy 7 EGRETsource3EGJ1824-1514(Hartmanetal.,1999)andalso LS 5039/RX J1826.2-1450 is a High Mass X-ray Binary 0 acomponentoftheMeVemitterGROJ1823-12,whichisasu- (HMXRB) system, which was discovered in the ROSAT all- . perpositionofthreeEGRETsources(Collmar,2003). 2 sky survey and identified with optical follow-up observations 1 by Motchetal. (1997). The compact companion is estimated ThesourcehaslikewisebeendiscoveredtoemitatTeVen- 8 to have a mass of M ∼ 3.7M , orbiting a bright, V = 11.2, ergies with the High Energy Stereoscopic System (H.E.S.S.) 0 ⊙ O6.5V((f))starwithanorbitalperiodP ∼3.9060±0.00017d, (Aharonianetal., 2005). This demonstrated that X-ray bina- : orb v an eccentricity e = 0.35 ± 0.04 and a distance of d = 2.5 ± ries are capable of accelerating particles to TeV energies. The i 0.1kpc(Casaresetal., 2005).Basedontheobservationofper- H.E.S.S. measurements have revealed that the flux and energy X sistentasymmetricmilliarcsecondradiooutflows(extendingup spectrum of the source are indeed modulated with the ∼ 3.9 d r to∼1000AU),Mart´ıetal.(1998)andParedesetal.(2000)sug- orbital period of the binary system (Aharonianetal., 2006). a gested the presence of a mildly relativistic (v ∼ 0.2 c) jet. The VHE γ-ray emission is largely confined to half of the or- Paredesetal. (2002) and Ribo´ etal. (2008) have thereforepro- bit and peaks around the inferior conjunction(INFC) epoch of posedthesourcetobeamicroquasar. the compact companion,where a hardening of the spectrum is LS 5039 has been observed by several X-ray satellites. A observed.According to the authorsthese findings indicate that summaryofallobservationscanbefoundinBosch-Ramonetal. γ−ray absorption with pair production occurs in the system. (2005). Flux variations on timescales of days as well as mini- Interestingly,orbitalvariabilityat TeV γ−ray energieshas also flaresonshortertimescaleshavebeenobserved.RXTEobserva- beendiscoveredinthesimilarsystemLSI+61◦303withMAGIC tions,coveringthewholeorbitalperiod,showvariabilitywitha (Albertetal.,2006)andVERITAS(Acciarietal.,2008). maximumofemissionatorbitalphaseφ=0.8,interpreteddueto ThenatureofthecompactobjectinthesystemRXJ1826.2- periastronpassage.Moreover,thepower-lawshapedX-rayspec- 1450/LS 5039 as well as the orgin of the TeV emis- trumappearsharderin the highflux state (Bosch-Ramonetal., sion is still under debate. A microquasar scenario (see 2005). e.g. Paredesetal., 2000; Bosch-Ramon&Paredes, 2004; Because inhomogeneousjetscouldemitγ−raysvia inverse Torres&Sierpowska-Bartosik, 2008) as well as a pulsar sce- Compton scattering, Paredesetal. (2000, 2002) have proposed nario (see e.g Dubus, 2006; Sierpowska-Bartosik&Torres, 2007; Bosch-Ramonetal., 2008) have been discussed. In this ⋆ BasedonobservationswithINTEGRAL,anESAprojectwithin- Letter, based mainly on archival data fromINTEGRALwhich strumentsandsciencedatacentrefundedbyESAmemberstates(espe- ciallythePIcountries:Denmark,France,Germany,Italy,Switzerland, span 4.6 years between March 2003 and October 2007, we Spain),CzechRepublicandPoland,andwiththeparticipationofRussia confirmthedetectionofthesourcereportedbyBirdetal.(2007) andtheUSA. in the energyrangefrom25 keV up to 200keV. We reportthe 2 Hoffmann,A.I.D.etal.:LS5039observedbyINTEGRAL Table 1. Summary of selected and analyzedINTEGRAL data forLS5039.Analyzeddataweretakenfrom69revolutions,i.e. from revolution 0050 (03-11-2003)to revolution 0614 (10-25- 2007). NumberofallextractedScWs 1648 NumberofScWsafterselection 1393 NumberofScWsinphaseSUPC 721 NumberofScWsinphaseINFC 672 finaltotalanalyzedexposuretime ≈ 2.99Msec splittedinSUPCphase ≈ 1.56Msec andinINFCphase ≈ 1.43Msec into10smallerpartsaccordingtotheorbitalphasetoanalysethe fluxdependenceonorbitalphase(seeSect.2.2).Table1summa- Fig.1. A sketch of the system. The orbital values are listed in rizestheobservationaldataofthesourceLS5039takenbythe Casaresetal.(2005)andthedefinitionofphaseintervalsisfrom INTEGRAL satellite and the selection made for this analysis. Aharonianetal.(2006). Only in less than 10% of the selected ScWs was LS 5039 in thefullycodedfieldofviewofJEM-X.Basedonthesensitivity of JEM-X1 and the amount of available data, a JEM-X analy- discoveryofthe modulationofthehardX-rayfluxwith orbital sis for a faintsource like LS5039is notsuitable. Inthis paper phase. we thereforefocusouranalysisonthe data of theIntegralSoft Gamma-RayImager(IBIS/ISGRI). 2. Observationsanddataanalysis 2.2.Analysis 2.1.Observations For the analysis of ISGRI data the Off-line Science Analysis The International Gamma-Ray Astrophysics Laboratory (OSA) software (version 7.0) providedby the ISDC was used. (INTEGRAL, Winkleretal., 2003) carries on boardtwo main Inaddition,wecrosscheckedtheresultsandalsogeneratedthe gamma-rayinstruments,theSpectrometeronINTEGRAL(SPI, lightcurveinSec.2.2.2withtheanalysispackagedevelopedby 20keV–8MeV, Vedrenneetal.,2003),andtheImageron-Board INAF-IFCPalermo2(Segreto&Ferrigno,2006). INTEGRAL Satellite (IBIS, 15keV–10MeV, Ubertinietal., A special handling of the OSA was used for this analysis. 2003) as well as two monitoring instruments in the X-ray and First, we used a user catalogue which includes 115 sources, optical range, the Joint European X-Ray Monitor (JEM-X, i.e. all sources listed in the INTEGRAL General Reference 3–35keV, Lundetal., 2003), and the Optical Monitoring Catalog3,whichareinthefieldofview(FoV)andwhichturned Camera(OMC, Mas-Hesseetal.,2003). out to be as bright as or brighter than RX J1826.2-1450 (≡ 1648 science windows (ScWs) in the region that in- LS5039).Thisisrequiredbecausethesourceofinterestisquite cludes LS 5039 are found in the data archive avail- faint and the crowdedfield producestoo many ghostimages if able at the INTEGRAL Scientific Data Center (ISDC, theknownsourcesarenotsubtracted.Second,thespectrumwas http://isdc.unige.ch/),includingpublicdataaswellasdatafrom produced with the help of the OSA tool mosaic spec4 from 13 theKeyProgramme.TheseScWswerepreselectedchoosingan mosaics,eachcoveringoneenergybininthe13−250keVrange. off-axisangleofthesourcesmallerthan10degreesandchoos- Thebinningwaschosenidenticaltothedefaultenergybinning ing only pointing observations that had a nominal observation OSA uses for the spectrumcalculation step (SPE). Thisproce- timeofmorethan1000seconds.1627ScWsweresuccessfully dure is needed due to the fact that the source is faint and the processed through the analysis with OSA 7.0 up to the image FoVistoocrowded,andprovidesmorereliableresultsthanthe stepIMA. standardOSApipelinedoes. In order to reduce statistical effects a further selection of WealsocheckedourresultsusingthestandardSPEandthe ”good science windows” was necessary. ScWs are included in lightcurvecreation(LCR)stepsofOSA.Inthiscaseweuseda theanalysiswhentheyfulfillthefollowingcriteria: special catalogue including all sources with a detection signif- icance greater than 6 σ in the energy band 20 − 60 keV. The 1. The effective exposure time after extraction is larger than catalogue includes 65 sources. According to the User Manual 1000sec. oftheINTEGRALIBIS/ISGRIdataanalysisthisisbeyondthe 2. The number of good time intervals (GTI) does not exceed standard method (see the IBIS Analysis Manual1 for details). 10. 3. ThemeanbackgroundintensitylevelofasingleScWinthe 1 The User Manual to the OSA can be found at: energyrange25−60keVfallswithin3σofthedistribution http://isdc.unige.ch/?Support+documents. See p.15 of ofthemeanbackgroundintensitylevelsofallotherScWsin JEM-XAnalysisUserManualforaJEM-Xsensitivityplot. thesameenergyrange. 2 http://www.pa.iasf.cnr.it/∼ferrigno/ INTEGRALsoftware.html The resulting 1393 ScWs cover the time range from 3 The INTEGRAL General Reference Catalogue is available at 03-11-2003 (ScW: 005000080010) to 10-25-2007 (ScW: ISDC:http://isdc.unige.ch/index.cgi?Data+catalogs 061400950010).Firstly,thesamplewassplitintotwopartsac- 4 http://isdc.unige.ch/Soft/download/osa/osa doc/ cordingtothe orbitalphaseforimaginganalysis,andsecondly osa doc-5.0/osa um ibis-5.0/node108.html#mosaspec Hoffmann,A.I.D.etal.:LS5039observedbyINTEGRAL 3 However,ourresultsshowthata carefultreatmentofthisstan- dardmethodprovidesacomparableresultinspiteoftherestric- tions(seeFig.4andSec.2.2.2). 2.2.1. Imaging Thesourceisclearlyseenatasignificancelevelof7.7σinthe lowerenergybandof25−60keVinthesignificancemapbased onthesumofallScWsfulfillingtheselectioncriteria.Inaddi- tion,wedividedthedatasetintotwophaseintervals:thesuperior conjunction passage at orbital phase 0.9 < φ ≤ 1.45 (SUPC), and the inferior conjunction, at orbital phase 0.45 < φ ≤ 0.9 (INFC)(seeFigs.1and4fordetails).Phaseintervalsaredefined inAharonianetal.(2006)fortheH.E.S.S.data.Thetwoorbital resolvedsignificancemapsintheenergyrange25−60keVare showninFig.2.Positionsofsources(openboxes)areprovided bythelatestINTEGRALGeneralReferenceCatalog3. At the INFC phase interval, the source was detected with a significance ≈ 7.8 σ, for an exposure time of ≈ 1.43 Msec (Fig. 2, lower panel). At the SUPC phase interval the source was observed for a total exposure time of 1.56 Msec, and was only marginallydetected: at the source position there is an ex- cess at the level of 2.8 σ (Fig. 2, upper panel). For the total sample and the total energy band 25 − 200keV the source is detected at the position fitted by OSA (RA = 276.517 deg, DEC=−14.812deg)with7.4σ.Withintheerrors,thisisconsis- tentwiththesourcepositiondeterminatedbyBirdetal.(2007). Fig.2.INTEGRALsignificancemapsintheenergyrange25− 2.2.2. Timinganalysis 60keV.Theopenboxesareknownsourcepositions.Comparable A lightcurve produced with the INAF-IFC data analysis soft- exposure times and a higher significance for LS 5039 in the ware(Segreto&Ferrigno,2006)wasusedforthetiminganaly- INFCphaseintervalindicatesvariabilityofthehardX-rayemis- sis.Accordingtotheauthorsthissoftwareissuitabletoproduce sionwithorbitalphase(seealsoFig.4).TheINFCphaseinter- reliableresultseveninthecaseofthepresenceofalargernum- val includes the maximum flux state of the source. Details can berofsourcesintheFoV. befoundinthetext. Searching for an unambiguous period failed due to low statisticsandlargegapsinthesampleofobservations.Butape- riodogramproducedby epoch foldingprovidesa peak at a pe- riodof3.903days,whichiswithinuncertaintiesidenticaltothe ergcm−2 s−1 (90%conf.level).FortheSUPCphaseintervala orbitalperioddeterminedbyCasaresetal.(2005)intheoptical fluxupperlimitof1.45× 10−12ergcm−2s−1(90%conf.level) band.Fig.3showstheperiodogram. fortheenergyrange25−200keVcanbedetermined. In a next step the lightcurve was folded using the known orbital period of P = 3.90603 days with HJD(T ) = orb 0 2451943d.09±0d.10 (≡ phase φ = 0.0 and periastron passage) 3. Summaryanddiscussion determinedbyCasaresetal.(2005),toproducea10binorbital phaseprofile.Inaddition,10mosaicscorrespondingtoeachof In this paper we report on a 3 Msec INTEGRAL monitoring the10orbitalphaseintervalswereproducedandthecountrates oftheHMXRBRXJ1826-1450/LS5039.Thefaintnessofthe at the catalogue3 position were determined. The values of the sourceandthefactthatitliesinacrowdedfieldrequiredavery fluxes were derived from a 2D-Gaussian fit with fixed width careful,non-standardhandlingofthedata. (HWHM=6.0arcmin)andfixedsourceposition.Bothmethods Ourresults,obtainedbyapplyingdifferentanalysismethods, yield (within errors) comparable results: The hard X-ray emis- pointoutthatthesourcesignificantlyemitsathardX-rays(25− sion is clearly modulated with the orbit, and appears to be in 200 keV) and that this emission varies with the orbit in phase phasewiththeTeVemission(Fig.4).TheH.E.S.S.datapoints with the very high energy γ-rays detected with H.E.S.S. (Fig. inthefigurearefromAharonianetal.(2006). 4). The spectrum at the inferior conjunction is well described by a power law, while at the superior conjunction the hard X- rayemission,ifany,isbelowthesensitivityofINTEGRAL.Our 2.2.3. Spectralanalysis result indicates that accretion might not be the mechanism for AstatisticallysignificantIBIS/ISGRIspectrumofLS5039was theproductionofthehardemission,since,inthiscase,wewould obtained for the orbital phase interval corresponding to INFC expectarathersharpfluxmaximumnearperiastron. (notshown here)and was modeledwith a powerlaw with Γ = Moreover,theobservedclosecorrelationofhardX-rayand 2.0+0.2(90%confidencelevel).Thereducedχ2forthefitis1.4(9 VHEγ-rayemissioninphasesuggeststhattheemissionwould −0.2 dof).Meancountratesforthetwophaseintervalsallowustoes- originate from the same source region, possibly from particles timateafluxfortheINFCphaseintervalof(3.54±2.30)×10−11 producedinthesameaccelerationprocess. 4 Hoffmann,A.I.D.etal.:LS5039observedbyINTEGRAL 40 This casts doubt on the simple explanation that the TeV P =3.906 d variability is mainly caused by γ-γ absorption,as suggested in orb Aharonianetal.(2006). 30 We note that, from the correlation alone, more compli- cated scenarios involving γ-γ absorption such as described by Dubusetal. (2008) cannotbe ruled out. However the cascades initiated in the γ-γ absorptionprocessproducesecondaryelec- χ2 20 trons (Bednarek, 1997) also emitting X-ray synchrotron emis- sion. Therefore, soft and hard X-ray flux levels can be used to constrain the amount of absorption involved. The detection of 10 TeVemissionatSUPCtogetherwiththeupperlimitinthehard X-ray domain derived here may pose problems for models in- vokingonlyoneemissionregionclosetothecompactobject,as recentlydiscussedinBosch-Ramonetal.(2008). 0 3.8 3.9 4.0 4.1 Radio observations interpreted as jets have led to a micro- Period [d] quasar interpretation for this source. In this scenario, particles Fig.3.AnepochfoldingontheINTEGRALlightcurvesshows are accelerated to ≈ TeV energies (Perucho&Bosch-Ramon, a significant peak at a period that is nearly identical to the or- 2008)duetotheinteractionbetweenthejetandthestellarwind bitalperiodknownand determinedfromopticalobservationof ofthecompanion.Alternatively,Dubus(2006)hassuggestedthe thesystem(Casaresetal.,2005).Allotherpeaksarelikelybeat sourcetobeapulsarbinarysystem,whereVHEemissionarises frequenciesduetothelargegapsinthesampleofobservations. fromthepulsarwindmaterialshockedbytheinteractionwiththe stellarcompanionwindandafterwardsflowingawayinacomet- shapetail.Unfortunately,theobservationspresentedheredonot enable us to discriminate between the two scenarios, although thepredictedX-rayvariabilitybyParedesetal.(2006)seemsto benotinaccordancewithourobservations.Finally,weremark that a hadronic scenario (Romeroetal., 2003; Romero&Vila, 2008) is not ruled out by our findings. A longer and more de- tailed interpretation of our results is beyond the scope of this Letter,andwillbethesubjectoffurtherinvestigations. Acknowledgements. WeacknowledgethesupportoftheDeutschesZentrumfu¨r Luft-undRaumfahrt(DLR)undergrantnumber50OR0302.Thisworkisbased onobservations withINTEGRAL,anEuropean Space Agency (ESA)project withinstrumentsandsciencedatacentrefundedbyESAmemberstates(espe- ciallythePIcountries:Denmark,France,Germany,Italy,Switzerland,Spain), CzechRepublicandPoland,andwiththeparticipationofRussiaandtheUSA. Wealsothanktheanonymousrefereeforhis/hervalueablecomments.andsug- gestions. References Acciari,V.A.,Beilicke,M.,Blaylock,G.,etal.2008,ApJ,679,1427 Aharonian,F.,Akhperjanian,A.G.,Aye,K.-M.,etal.2005,Science,309,746 Aharonian,F.,Akhperjanian,A.G.,Bazer-Bachi,A.R.,etal.2006,A&A,460, 743 Albert,J.,Aliu,E.,Anderhub,H.,etal.2006,Science,312,1771 Bednarek,W.1997,A&A,322,523 Bird,A.J.,Malizia,A.,Bazzano,A.,etal.2007,ApJS,170,175 Bosch-Ramon, V., Khangulyan, D., & Aharonian, F. 2008, ArXiv e-prints, 0810.4494 Bosch-Ramon,V.&Paredes,J.M.2004,A&A,417,1075 Bosch-Ramon,V.,Paredes,J.M.,Ribo´,M.,etal.2005,ApJ,628,388 Casares,J.,Ribo´,M.,Ribas,I.,etal.2005,MNRAS,364,899 Collmar,W.2003,inProc.of4thAgileScienceWorkshop,Franscati(Rome)on 11-13June2003,p.177 Dubus,G.2006,A&A,456,801 Dubus,G.,Cerutti,B.,&Henri,G.2008,A&A,477,691 Fig.4. Top: Orbital profile for LS 5039 in the energy range Hartman,R.C.,Bertsch,D.L.,Bloom,S.D.,etal.1999,ApJS,123,79 25 − 200 keV observed with INTEGRAL. The lightcurve is Lund,N.,Budtz-Jørgensen,C.,Westergaard,N.J.,etal.2003,A&A,411,L231 Mart´ı,J.,Paredes,J.M.,&Ribo,M.1998,A&A,338,L71 foldedwiththeorbitalperiodof3.9days.Bottom:Orbitalpro- Mas-Hesse,J.M.,Gime´nez,A.,Culhane,J.L.,etal.2003,A&A,411,L261 fileforLS5039fortheenergyrangeabove1TeVobservedwith Motch,C.,Haberl,F.,Dennerl,K.,Pakull,M.,&Janot-Pacheco,E.1997,A&A, H.E.S.S.(Aharonianetal.,2006).ThehardX-rayemissionisin 323,853 phasewiththeTeVγ-rays. Paredes,J.M.,Bosch-Ramon,V.,&Romero,G.E.2006,A&A,451,259 Paredes,J.M.,Mart´ı,J.,Ribo´,M.,&Massi,M.2000,Science,288,2340 Paredes,J.M.,Ribo´,M.,Ros,E.,Mart´ı,J.,&Massi,M.2002,A&A,393,L99 Perucho,M.&Bosch-Ramon,V.2008,A&A,482,917 Ribo´,M.,Paredes,J.M.,Moldo´n,J.,Mart´ı,J.,&Massi,M.2008,A&A,481, 17 Hoffmann,A.I.D.etal.:LS5039observedbyINTEGRAL 5 Romero,G.E.,Torres,D.F.,KaufmanBernado´,M.M.,&Mirabel,I.F.2003, A&A,410,L1 Romero,G.E.&Vila,G.S.2008,A&A,485,623 Segreto,A.&Ferrigno.2006,inProc.ofthe6thINTEGRALWorkshop”The ObscuredUniverse”,Moscowon2-8July2006,ed.S.Grebenev,R.Sunyaev, &C.Winkler,p.633 Sierpowska-Bartosik,A.&Torres,D.F.2007,ApJ,671,L145 Torres,D.F.&Sierpowska-Bartosik,A.2008,ArXive-prints,0810.4435 Ubertini,P.,Lebrun,F.,DiCocco,G.,etal.2003,A&A,411,L131 Vedrenne,G.,Roques,J.-P.,Scho¨nfelder,V.,etal.2003,A&A,411,L63 Winkler,C.,Courvoisier,T.J.-L.,DiCocco,G.,etal.2003,A&A,411,L1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.