ebook img

Innovation in Health Informatics: A Smart Healthcare Primer PDF

422 Pages·2019·19.68 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Innovation in Health Informatics: A Smart Healthcare Primer

Innovation in Health Informatics Innovation in Health Informatics A Smart Healthcare Primer Edited by Miltiadis D. Lytras Effat College of Engineering, Effat University, Jeddah, Saudi Arabia Akila Sarirete Effat College of Engineering, Effat University, Jeddah, Saudi Arabia Series Editor Miltiadis D. Lytras Effat College of Engineering, Effat University, Jeddah, Saudi Arabia Anna Visvizi (cid:1) Deree Cllege The American College of Greece, Greece; Effat College of Business, Effat University, Jeddah, Saudi Arabia Ernesto Damiani University of Milan, Italy; Khalifa University, UAE AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom Copyright©2020ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite:www.elsevier.com/permissions. ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationor methodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomthey haveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein. BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress ISBN:978-0-12-819043-2 ForInformationonallAcademicPresspublications visitourwebsiteathttps://www.elsevier.com/books-and-journals Publisher:StacyMasucci SeniorAcquisitionEditor:RafaelE.Teixeira EditorialProjectManager:SaraPianavilla ProductionProjectManager:KiruthikaGovindaraju CoverDesigner:GregHarris TypesetbyMPSLimited,Chennai,India Contents List of contributors..............................................................................................xvii Preface.................................................................................................................xxi Acknowledgments................................................................................................xxv Section A Smart Healthcare in the Era of Bid Data and Data Science...... 1 Chapter 1:Smart Healthcare: emerging technologies, best practices, and sustainable policies................................................................................ 3 Miltiadis D. Lytras, Paraskevi Papadopoulou and Akila Sarirete 1.1 Introduction........................................................................................................3 1.2 Bridging innovative technologies and smart solutions in medicine and healthcare............................................................................................................4 1.2.1 From genomics to proteomics to bioinformatics and health informatics................................................................................................5 1.2.2 Ways of developing intelligent and personalized healthcare interventions..............................................................................................7 1.2.3 Advancing medicine and healthcare: insights and wise solutions..............8 1.2.4 Ways of disseminating our healthcare experience.....................................8 1.3 Visioning the future of resilient Smart Healthcare.........................................10 1.4 Content management resilient Smart Healthcare systems cluster..................11 1.4.1 Resilient Smart Healthcare learning management systems cluster...........12 1.4.2 Resilient Smart Healthcare document management systems cluster........14 1.4.3 Resilient Smart Healthcare workflow automation...................................17 1.4.4 Resilient Smart Healthcare microcontent services and systems...............19 1.4.5 Resilient Smart Healthcare collaboration systems and services...............22 1.5 Networking technologies for resilient Smart Healthcare systems cluster......25 1.5.1 Smart systems.........................................................................................25 1.6 Data warehouses and distributed systems for resilient Smart Healthcare applications.......................................................................................................26 v vi Contents 1.6.1 Indicative smart applications for data warehouses in the context of resilient Smart Healthcare design........................................................27 1.6.2 Smart systems.........................................................................................29 1.7 Analytics and business intelligence resilient Smart Healthcare systems cluster...............................................................................................................30 1.7.1 Indicative smart applications...................................................................31 1.7.2 Smart systems.........................................................................................32 1.8 Emerging technologies resilient Smart Healthcare systems cluster...............32 1.8.1 Indicative smart applications...................................................................32 1.8.2 Smart systems.........................................................................................34 1.9 Resilient Smart Healthcare innovation............................................................34 1.9.1 The evolution of resilient smart..............................................................34 1.9.2 Indicative smart applications...................................................................35 1.10 Conclusion........................................................................................................36 References...................................................................................................................36 Further reading............................................................................................................37 Chapter 2:Syndromic surveillance using web data: a systematic review................... 39 Loukas Samaras, Elena Garcı´a-Barriocanal and Miguel-Angel Sicilia 2.1 Introduction: background and scope..................................................................39 2.2 Methodology: research protocol and stages......................................................41 2.2.1 Stage 1: Preparation, research questions, and queries...............................41 2.2.2 Stage 2: Data retrieval..............................................................................43 2.2.3 Stage 3: Data analysis: study selection and excluding criteria..................43 2.2.4 Stage 4: Data synthesis.............................................................................43 2.2.5 Stage 5: Results analysis...........................................................................44 2.2.6 Stage 6: Writing.......................................................................................44 2.3 Results and analysis...........................................................................................45 2.3.1 RQ1: Is the academic interest growing or declining?................................45 2.3.2 RQ2: Regarding syndromic surveillance using web data, what aspects have been explored until today in the available literature?...........46 2.3.3 RQ3: What topics need further development and research?......................54 2.4 Discussion and conclusions................................................................................54 2.4.1 Results......................................................................................................54 2.4.2 Information systems and epidemics..........................................................55 2.4.3 Impact to society, ethics, and challenges..................................................57 2.4.4 Smart Healthcare innovations...................................................................58 2.4.5 Conclusions and outlook...........................................................................59 2.5 Teaching assignments........................................................................................61 Contents vii Acknowledgments.......................................................................................................61 Author contributions...................................................................................................61 References...................................................................................................................61 Appendix: Included studies (alphabetical).................................................................63 Chapter 3:Natural Language Processing, Sentiment Analysis, and Clinical Analytics................................................................................ 79 Adil Rajput 3.1 Introduction........................................................................................................79 3.1.1 Natural Language Processing and Healthcare/Clinical Analytics..............79 3.1.2 Sentiment analysis....................................................................................80 3.2 Natural Language Processing.............................................................................81 3.2.1 Traditional approach—key concepts.........................................................81 3.2.2 Statistical spproach—key concepts...........................................................86 3.3 Applications........................................................................................................91 3.3.1 Sentiment analysis....................................................................................91 3.3.2 Natural Language processing application in medical sciences..................92 3.4 Conclusion..........................................................................................................94 3.4.1 Future research directions.........................................................................94 3.4.2 Teaching assignments...............................................................................95 References...................................................................................................................95 Further reading............................................................................................................97 Section B Advanced Decision Making and Artificial Intelligence for Smart Healthcare.......................................................................... 99 Chapter 4:Clinical decision support for infection control in surgical care................101 Marco Spruit and Sander van der Rijnst 4.1 Introduction......................................................................................................101 4.2 Research methodology.....................................................................................102 4.2.1 Data collection methods.........................................................................103 4.2.2 Design objectives....................................................................................104 4.3 Clinical decision support prototype.................................................................104 4.3.1 Contextual background...........................................................................105 4.3.2 Describing the surgical process using process-deliverable diagrams.......107 4.3.3 Data sources, data collection procedure, and data description.................109 4.3.4 Algorithms..............................................................................................109 viii Contents 4.3.5 Key performance indicators....................................................................111 4.3.6 Opportunities for local improvements.....................................................112 4.4 Exploratory data analysis.................................................................................112 4.4.1 Appropriate use of prophylactic antibiotics.............................................113 4.4.2 Maintenance of (perioperative) normothermia........................................113 4.4.3 Hygienic discipline in operating rooms regarding door movements........114 4.5 Discussion and implications.............................................................................117 4.5.1 Limitations and further research.............................................................118 4.6 Conclusion........................................................................................................119 4.7 Teaching assignments......................................................................................120 References.................................................................................................................120 Further reading..........................................................................................................121 Chapter 5:Human activity recognition using machine learning methods in a smart healthcare environment......................................................123 Abdulhamit Subasi, Kholoud Khateeb, Tayeb Brahimi and Akila Sarirete 5.1 Introduction......................................................................................................123 5.2 Background and literature review....................................................................127 5.2.1 Human activity recognition with body sensors.......................................127 5.2.2 Human activity recognition with mobile phone sensors..........................129 5.3 Machine learning methods...............................................................................131 5.3.1 Artificial neural networks.....................................................................131 5.3.2 k-Nearest neighbor................................................................................131 5.3.3 Support vector machine........................................................................132 5.3.4 Na¨ıve Bayes.........................................................................................132 5.3.5 Classification and regression tree..........................................................132 5.3.6 C4.5 decision tree.................................................................................133 5.3.7 REPTree...............................................................................................133 5.3.8 LADTree algorithm..............................................................................133 5.3.9 Random tree classifiers.........................................................................134 5.3.10 Random forests.....................................................................................134 5.4 Results..............................................................................................................135 5.4.1 Experimental results for human activity recognition data taken from body sensors..................................................................................136 5.4.2 Experimental results for human activity recognition data taken from smartphone sensors........................................................................138 5.5 Discussion and conclusion...............................................................................140 5.6 Teaching assignments......................................................................................142 References.................................................................................................................142 Contents ix Chapter 6:Application of machine learning and image processing for detection of breast cancer.................................................................................145 Muhammad Kashif, Kaleem Razzaq Malik, Sohail Jabbar and Junaid Chaudhry 6.1 Introduction......................................................................................................145 6.1.1 Mammograms.........................................................................................146 6.1.2 Preprocessing..........................................................................................147 6.1.3 Segmentation..........................................................................................147 6.1.4 Machine learning....................................................................................147 6.2 Literature review..............................................................................................149 6.3 Proposed work..................................................................................................150 6.3.1 Dataset....................................................................................................150 6.3.2 Noise removal (preprocessing)................................................................150 6.3.3 Segmentation process.............................................................................152 6.3.4 Feature extraction...................................................................................153 6.3.5 Training model and testing.....................................................................155 6.3.6 Classification..........................................................................................155 6.3.7 Performance evaluation metrics..............................................................155 6.3.8 f-Score measure......................................................................................156 6.4 Results..............................................................................................................157 6.5 Discussions.......................................................................................................158 6.6 Conclusion........................................................................................................160 6.7 Research contribution highlights.....................................................................161 6.8 Teaching assignments......................................................................................161 References.................................................................................................................162 Chapter 7: Toward information preservation in healthcare systems........................163 Omar El Zarif and Ramzi A. Haraty 7.1 Introduction......................................................................................................163 7.2 The literature review........................................................................................165 7.2.1 Log files.................................................................................................165 7.2.2 Graph......................................................................................................166 7.2.3 Clustering...............................................................................................167 7.2.4 Matrices..................................................................................................167 7.3 Our approach....................................................................................................168 7.3.1 Background............................................................................................169 7.3.2 Adaptation to multilevel.........................................................................170 7.3.3 Complexity analysis................................................................................177 x Contents 7.4 Experimental results.........................................................................................177 7.4.1 Performance results of the detection algorithm.......................................178 7.4.2 Performance results of the recovery algorithm........................................180 7.4.3 Memory footprint analysis......................................................................182 7.5 Conclusion........................................................................................................183 7.6 Teaching assignments......................................................................................184 References.................................................................................................................184 Section C Emerging technologies and systems for smart healthcare......................................................................................187 Chapter 8:Security and privacy solutions for smart healthcare systems .................189 Yang Lu and Richard O. Sinnott 8.1 Introduction......................................................................................................189 8.2 Smart healthcare framework and techniques...................................................191 8.3 Identified issues and solutions.........................................................................196 8.3.1 Authentication........................................................................................198 8.3.2 Privacy-aware access control..................................................................202 8.3.3 Anonymization.......................................................................................206 8.4 Discussion.........................................................................................................210 8.5 Conclusions and open research issues in future..............................................211 8.6 Teaching assignments......................................................................................212 References.................................................................................................................212 Further reading..........................................................................................................216 Chapter 9:Cloud-based health monitoring framework using smart sensors and smartphone.................................................................................217 Abdulhamit Subasi, Lejla Bandic and Saeed Mian Qaisar 9.1 Introduction......................................................................................................217 9.2 Background and literature review....................................................................220 9.2.1 Electrocardiogram in cloud-based mobile healthcare..............................221 9.2.2 Electroencephalogram in cloud-based mobile healthcare........................223 9.3 Signal acquisition, segmentation, and denoising methods..............................225 9.3.1 Adaptive rate acquisition........................................................................226 9.3.2 Adaptive rate segmentation.....................................................................226 9.3.3 Adaptive rate interpolation.....................................................................227 9.3.4 Adaptive rate filtering.............................................................................227

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.