Ben-Haim’s “theories and presentation of how to calculate what one needs to know are, or should be, must reading for anyone seriously involved in any aspect of today’s economic world, from the trader on a desk to a Central Bank head. It is much too easy, given the stresses of today’s world, to skip past missing information so as to act quickly in the market, but that is exactly the path which leads to significant errors, as we have all unfortunately witnessed. A method of calculating the ‘info gap’ is certainly vital in setting policy.” Lew Weston, Retired Partner, Goldman, Sachs & Co. “In an economic world where complexity defines the system and the underlying models are at best simplistic and incomplete, it is imperative that policy decisions be taken on the assumption of (disappointingly) incomplete knowledge. Now, more than ever, is the economics profession confronted with the truth of it all. This is the time for info-gap and decisions under fundamental uncertainty.” Dr Maria Demertzis, Research Department, De Nederlandsche Bank. “The work by Yakov Ben-Haim is always inspiring. It is impressive how many scientists already apply his theory. With his enthusiasm, Yakov has made uncertainty issues a topic in a variety of disciplines and thus promoted interdisciplinary work, which is most welcome. It is particu- larly important to consider uncertainty in economic decision-making, as the current financial crisis shows. For me, as a forest scientist and forest economist, uncertainty is a key topic to be addressed by any sustainable management strategy for ecosystems. This book provides an excellent overview on opportunities for economic applications of the Information-Gap Theory. The manifold practical examples make it easy for all to understand and to follow, including persons who are yet not familiar with uncertainty issues.” Dr Thomas Knoke, Institute of Forest Management, Technical University of Munich. “Much of the recent economic crisis can be traced to over-reliance on simple mathematical models that take no account of the fact that real economies are subject to significant Knightian uncertainty. Ben-Haim shows how Info-Gap Theory can be used to model this uncertainty with carefully chosen, relevant and important economic examples. A must-read for serious economic decision makers.” Prof. Colin J. Thompson, Maths and Stats Department, University of Melbourne. Also by Yakov Ben-Haim: INFO-GAP DECISION THEORY: Decisions Under Severe Uncertainty, 2nd edition ROBUST RELIABILITY IN THE MECHANICAL SCIENCES CONVEX MODELS OF UNCERTAINTY IN APPLIED MECHANICS, with I. Elishakoff THE ASSAY OF SPATIALLY RANDOM MATERIAL Info-Gap Economics An Operational Introduction Yakov Ben-Haim © Yakov Ben-Haim 2010 Softcover reprint of the hardcover 1st edition 2010 978-0-230-22804-7 All rights reserved. No reproduction, copy or transmission of this publication may be made without written permission. No portion of this publication may be reproduced, copied or transmitted save with written permission or in accordance with the provisions of the Copyright, Designs and Patents Act 1988, or under the terms of any licence permitting limited copying issued by the Copyright Licensing Agency, Saffron House, 6–10 Kirby Street, London EC1N 8TS. Any person who does any unauthorized act in relation to this publication may be liable to criminal prosecution and civil claims for damages. The author has asserted his right to be identified as the author of this work in accordance with the Copyright, Designs and Patents Act 1988. First published 2010 by PALGRAVE MACMILLAN Palgrave Macmillan in the UK is an imprint of Macmillan Publishers Limited, registered in England, company number 785998, of Houndmills, Basingstoke, Hampshire RG21 6XS. Palgrave Macmillan in the US is a division of St Martin’s Press LLC, 175 Fifth Avenue, New York, NY 10010. Palgrave Macmillan is the global academic imprint of the above companies and has companies and representatives throughout the world. Palgrave® and Macmillan® are registered trademarks in the United States, the United Kingdom, Europe and other countries. ISBN 978-1-349-30991-7 ISBN 978-0-230-27732-8 (eBook) DOI 10.1057/9780230277328 This book is printed on paper suitable for recycling and made from fully managed and sustained forest sources. Logging, pulping and manufacturing processes are expected to conform to the environmental regulations of the country of origin. A catalogue record for this book is available from the British Library. A catalog record for this book is available from the Library of Congress. 10 9 8 7 6 5 4 3 2 1 19 18 17 16 15 14 13 12 11 10 To contact the author: Prof. Yakov Ben-Haim Yitzhak Moda'i Chair in Technology and Economics Technion – Israel Institute of Technology Haifa 32000 Israel [email protected] http://info-gap.com Contents Preface x I Getting Started 1 1 Info-Gap Theory in Plain English 3 1.1 Can Models Help? . . . . . . . . . . . . . . . . . . . . 3 1.2 Elements of Info-Gap Theory . . . . . . . . . . . . . . 6 1.3 Implications of Info-Gap Theory . . . . . . . . . . . . 9 1.4 Applications of Info-Gap Theory . . . . . . . . . . . . 11 2 A First Look: Stylized Example 15 2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . 16 2.2 Robustness . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.1 Formulation and Derivation . . . . . . . . . . . 17 2.2.2 Trade-Off and Zeroing . . . . . . . . . . . . . . 19 2.2.3 Preference Reversal . . . . . . . . . . . . . . . 20 2.2.4 What Do the Numbers Mean? . . . . . . . . . 21 2.3 Opportuneness . . . . . . . . . . . . . . . . . . . . . . 22 2.3.1 Formulation . . . . . . . . . . . . . . . . . . . . 22 2.3.2 Interpretation . . . . . . . . . . . . . . . . . . . 23 II Economic Decisions 27 3 Monetary Policy 29 3.1 Taylor Rule for Interest Rates . . . . . . . . . . . . . . 29 3.1.1 Policy Preview . . . . . . . . . . . . . . . . . . 30 3.1.2 Operational Preview . . . . . . . . . . . . . . . 30 3.1.3 Formulation . . . . . . . . . . . . . . . . . . . . 31 v 3.1.4 Uncertainty, Performance and Robustness . . . 33 3.1.5 Policy Exploration . . . . . . . . . . . . . . . . 35 3.2 Expectations, Communication and Credibility . . . . . 41 3.2.1 Policy Preview . . . . . . . . . . . . . . . . . . 43 3.2.2 Operational Preview . . . . . . . . . . . . . . . 44 3.2.3 Dynamics and Expectations . . . . . . . . . . . 45 3.2.4 Uncertainty and Robustness . . . . . . . . . . . 47 3.2.5 Policy Exploration . . . . . . . . . . . . . . . . 49 3.3 Shocks, Expectations and Credibility . . . . . . . . . . 56 3.3.1 Policy Preview . . . . . . . . . . . . . . . . . . 56 3.3.2 Operational Preview . . . . . . . . . . . . . . . 57 3.3.3 Dynamics and Expectations . . . . . . . . . . . 58 3.3.4 Uncertainty and Robustness . . . . . . . . . . . 59 3.3.5 Policy Exploration . . . . . . . . . . . . . . . . 61 3.4 Credibility and Interacting Agents . . . . . . . . . . . 65 3.4.1 Policy Preview . . . . . . . . . . . . . . . . . . 66 3.4.2 Operational Preview . . . . . . . . . . . . . . . 67 3.4.3 Dynamics and Expectations . . . . . . . . . . . 68 3.4.4 Uncertainty and Robustness . . . . . . . . . . . 70 3.4.5 Policy Exploration . . . . . . . . . . . . . . . . 72 3.5 Extensions. . . . . . . . . . . . . . . . . . . . . . . . . 77 3.6 Appendix: Auto-Regressive Representation of the Rudebusch-Svensson Model . . . . . . . . . . . . . . . 78 3.7 Appendix: Derivation of Expectation Coefficients . . . 79 3.8 Appendix: Derivation of Inverse 1-Step Robustnesses . 80 4 Financial Stability 87 4.1 Structured Securities: Simple Example . . . . . . . . . 87 4.1.1 Policy Preview . . . . . . . . . . . . . . . . . . 88 4.1.2 Operational Preview . . . . . . . . . . . . . . . 88 4.1.3 Formulation . . . . . . . . . . . . . . . . . . . . 89 4.1.4 Uncertainty Model . . . . . . . . . . . . . . . . 90 4.1.5 Robustness Functions . . . . . . . . . . . . . . 91 4.1.6 Policy Exploration . . . . . . . . . . . . . . . . 92 4.1.7 Extensions . . . . . . . . . . . . . . . . . . . . 94 4.2 Value at Risk in Financial Economics . . . . . . . . . 95 4.2.1 Policy Preview . . . . . . . . . . . . . . . . . . 97 4.2.2 Operational Preview . . . . . . . . . . . . . . . 98 4.2.3 Value at Risk: Formulation . . . . . . . . . . . 98 4.2.4 Uncertainty Model: Fat Tails . . . . . . . . . . 99 4.2.5 Performance and Robustness . . . . . . . . . . 101 vi 4.2.6 Safety Factor and Incremental VaR. . . . . . . 103 4.2.7 Policy Exploration . . . . . . . . . . . . . . . . 104 4.2.8 Robustness with Uncertain Normal Distributions. . . . . . . . . . . . . . . 110 4.2.9 Extensions . . . . . . . . . . . . . . . . . . . . 113 4.3 Stress Testing: Suite of Models . . . . . . . . . . . . . 115 4.3.1 Suite of Models and their Uncertainties . . . . 116 4.3.2 Shocks and their Uncertainties . . . . . . . . . 118 4.3.3 Embedding a Stress Test . . . . . . . . . . . . 119 4.4 Strategic Asset Allocation . . . . . . . . . . . . . . . . 120 4.4.1 Policy Preview . . . . . . . . . . . . . . . . . . 121 4.4.2 Operational Preview . . . . . . . . . . . . . . . 121 4.4.3 Budget Constraint . . . . . . . . . . . . . . . . 122 4.4.4 Uncertainty . . . . . . . . . . . . . . . . . . . . 123 4.4.5 Performance and Robustness . . . . . . . . . . 124 4.4.6 Opportuneness Function . . . . . . . . . . . . . 125 4.4.7 Policy Exploration . . . . . . . . . . . . . . . . 127 4.4.8 Extensions . . . . . . . . . . . . . . . . . . . . 131 4.5 Appendix: Derivation of an Info-Gap Model . . . . . . 132 5 Topics in Public Policy 135 5.1 Emissions Compliance . . . . . . . . . . . . . . . . . . 135 5.1.1 Policy Preview . . . . . . . . . . . . . . . . . . 136 5.1.2 Operational Preview . . . . . . . . . . . . . . . 137 5.1.3 Welfare Loss: Formulation . . . . . . . . . . . . 137 5.1.4 Uncertainty . . . . . . . . . . . . . . . . . . . . 139 5.1.5 Robustness . . . . . . . . . . . . . . . . . . . . 140 5.1.6 Policy Exploration . . . . . . . . . . . . . . . . 142 5.1.7 Extensions . . . . . . . . . . . . . . . . . . . . 149 5.2 Enforcing Pollution Limits . . . . . . . . . . . . . . . . 150 5.2.1 Policy Preview . . . . . . . . . . . . . . . . . . 150 5.2.2 Operational Preview . . . . . . . . . . . . . . . 151 5.2.3 Economic Model . . . . . . . . . . . . . . . . . 152 5.2.4 Uncertainty and Robustness . . . . . . . . . . . 156 5.2.5 Policy Exploration . . . . . . . . . . . . . . . . 158 5.2.6 Extensions . . . . . . . . . . . . . . . . . . . . 164 5.3 Climate Change. . . . . . . . . . . . . . . . . . . . . . 165 5.3.1 Policy Preview . . . . . . . . . . . . . . . . . . 166 5.3.2 Operational Preview . . . . . . . . . . . . . . . 166 5.3.3 System Model. . . . . . . . . . . . . . . . . . . 167 5.3.4 Performance Requirement . . . . . . . . . . . . 168 vii 5.3.5 Uncertainty Models . . . . . . . . . . . . . . . 169 5.3.6 Robustness . . . . . . . . . . . . . . . . . . . . 170 5.3.7 Policy Exploration . . . . . . . . . . . . . . . . 172 5.3.8 Extensions . . . . . . . . . . . . . . . . . . . . 176 5.4 Appendix: Derivation of Eq.(5.19) . . . . . . . . . . . 177 5.5 Appendix: Derivation of Eq.(5.22) . . . . . . . . . . . 178 6 Estimation and Forecasting 179 6.1 Regression Prediction . . . . . . . . . . . . . . . . . . 179 6.1.1 Policy Preview . . . . . . . . . . . . . . . . . . 181 6.1.2 Operational Preview . . . . . . . . . . . . . . . 181 6.1.3 Regression and Robustness . . . . . . . . . . . 182 6.1.4 Policy Exploration . . . . . . . . . . . . . . . . 185 6.1.5 Extensions . . . . . . . . . . . . . . . . . . . . 188 6.2 Auto-Regression and Data Revision . . . . . . . . . . 189 6.2.1 Policy Preview . . . . . . . . . . . . . . . . . . 190 6.2.2 Operational Preview . . . . . . . . . . . . . . . 190 6.2.3 Auto-Regression . . . . . . . . . . . . . . . . . 190 6.2.4 Uncertainty and Robustness . . . . . . . . . . . 191 6.2.5 Policy Exploration . . . . . . . . . . . . . . . . 193 6.3 Confidence Intervals . . . . . . . . . . . . . . . . . . . 197 6.3.1 Policy Preview . . . . . . . . . . . . . . . . . . 197 6.3.2 Operational Preview . . . . . . . . . . . . . . . 197 6.3.3 Formulating the Confidence Interval . . . . . . 198 6.3.4 Uncertainty and Robustness . . . . . . . . . . . 200 6.3.5 Policy Exploration . . . . . . . . . . . . . . . . 202 6.3.6 Extension . . . . . . . . . . . . . . . . . . . . . 208 6.4 Appendix: Least Squares Regression Coefficients for Section 6.1 . . . . . . . . . . . . . . . . . . . . . . . . 209 6.5 Appendix: Mean Squared Error for Section 6.2 . . . . 209 III Wrapping Up 211 7 The Art of Uncertainty Modelling 213 7.1 Uncertain Parameters . . . . . . . . . . . . . . . . . . 214 7.1.1 Certainty . . . . . . . . . . . . . . . . . . . . . 214 7.1.2 Fractional Error . . . . . . . . . . . . . . . . . 214 7.1.3 Fractional Error with Bounds . . . . . . . . . . 217 7.1.4 Calibrated Fractional Error . . . . . . . . . . . 218 7.1.5 Discrete Probability Distributions . . . . . . . 219 viii 7.2 Uncertain Function . . . . . . . . . . . . . . . . . . . . 220 7.2.1 Envelope Bound . . . . . . . . . . . . . . . . . 221 7.2.2 Slope Bound . . . . . . . . . . . . . . . . . . . 222 7.2.3 Auto-Regressive Functions. . . . . . . . . . . . 225 7.3 Extensions. . . . . . . . . . . . . . . . . . . . . . . . . 226 8 Positivism, F-twist, and Robust-Satisficing 227 8.1 Friedman and Samuelson . . . . . . . . . . . . . . . . 228 8.2 Shackle-Popper Indeterminism . . . . . . . . . . . . . 230 8.3 Methodological Implications . . . . . . . . . . . . . . . 231 References 233 Author Index 241 Subject Index 244 ix