ebook img

Indefinite Linear Algebra and Applications PDF

363 Pages·2005·1.721 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Indefinite Linear Algebra and Applications

Israel Gohberg Peter Lancaster Leiba Rodman Indefinite Linear Algebra and Applications Birkhäuser Basel Boston Berlin • • Authors: Israel Gohberg Peter Lancaster School of Mathematical Sciences Department of Mathematics and Statistics Raymond and Beverly Sackler University of Calgary Faculty of Exact Sciences Calgary, Alberta T2N 1N4, Canada Tel Aviv University e-mail: [email protected] Ramat Aviv 69978, Israel e-mail: [email protected] Leiba Rodman Department of Mathematics College of William and Mary P.O. Box 8795 Williamsburg, VA 23187-8795, USA e-mail: [email protected] 2000 Mathematics Subject Classification 32-01 A CIP catalogue record for this book is available from the Library of Congress, Washington D.C., USA Bibliographic information published by Die Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>. ISBN 3-7643-7349-0 Birkhäuser Verlag, Basel – Boston – Berlin This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcast- ing, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained. © 2005 Birkhäuser Verlag, P.O. Box 133, CH-4010 Basel, Switzerland Part of Springer Science+Business Media Cover design: Micha Lotrovsky, CH-4106 Therwil, Switzerland Printed on acid-free paper produced from chlorine-free pulp. TCF°° Printed in Germany ISBN-10: 3-7643-7349-0 e-ISBN: 3-7643-7350-4 ISBN-13: 978-3-7643-7349-8 9 8 7 6 5 4 3 2 1 www.birkhauser.ch We fondly dedicate this book to family members: Israel Gohberg: To his wife, children, and grandchildren. Peter Lancaster: To his wife, Diane. Leiba Rodman: To Ella, Daniel, Ruth, Benjamin, Naomi. Preface Thefollowingtopicsofmathematicalanalysishavebeendevelopedinthelastfifty years:thetheoryoflinearcanonicaldifferentialequationswithperiodicHamiltoni- ans,the theory of matrix polynomials with selfadjoint coefficients, linear differen- tial and difference equations of higher order with selfadjoint constant coefficients, andalgebraicRiccatiequations.Allofthesetheories,andothers,arebasedonrel- atively recent results of linear algebra in spaces with an indefinite inner product, i.e., linear algebra in which the usual positive definite inner product is replaced by an indefinite one. More concisely, we call this subject indefinite linear algebra. Thisbookhasthestructureofagraduatetextinwhichchaptersofadvanced linear algebra form the core. The development of our topics follows the lines of a usuallinear algebracourse.However,chaptersgiving comprehensivetreatments of differential and difference equations, matrix polynomials and Riccati equations are interwoven as the necessary techniques are developed. The main source of material is our earlier monograph in this field: Matrices and Indefinite Scalar Products, [40]. The present book differs in objectives and material.Somechaptershavebeenexcluded,othershavebeenadded,andexercises have been added to all chapters. An appendix is also included. This may serve as a summary and refresher on standard results as well as a source for some less familiar material from linear algebra with a definite inner product. The theory developedhere hasbecome anessentialpartoflinearalgebra.This,togetherwith the many significantareasofapplication,andthe accessiblestyle,make this book useful for engineers, scientists and mathematicians alike. Acknowledgements The authors gratefully acknowledge support from several projects and organi- zations: Israel Gohberg acknowledges the generous support of the Silver Family FoundationandtheSchoolofMathematicalSciencesofTel-AvivUniversity.Peter Lancaster acknowledges continuing support from the Natural Sciences and Engi- neeringResearchCouncilofCanada.SupportfromN.J.HighamoftheUniversity ofManchesterforaresearchfellowshiptenableduringthepreparationofthiswork viii Preface is also gratefully acknowledged. Leiba Rodman acknowledges partial support by NSF grant DMS-9988579, and by the Summer Research Grant and Faculty Re- search Assignment provided by the College of William and Mary. Contents Preface vii 1 Introduction and Outline 1 1.1 Description of the Contents . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Notation and Conventions . . . . . . . . . . . . . . . . . . . . . . . 3 2 Indefinite Inner Products 7 2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Orthogonality and OrthogonalBases . . . . . . . . . . . . . . . . . 9 2.3 Classification of Subspaces . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3 Orthogonalization and Orthogonal Polynomials 19 3.1 Regular Orthogonalizations . . . . . . . . . . . . . . . . . . . . . . 19 3.2 The Theorems of Szeg˝o and Krein . . . . . . . . . . . . . . . . . . 27 3.3 One-Step Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.4 Determinants of One-Step Completions . . . . . . . . . . . . . . . 36 3.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4 Classes of Linear Transformations 45 4.1 Adjoint Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2 H-Selfadjoint Matrices: Examples and Simplest Properties . . . . . 48 4.3 H-Unitary Matrices: Examples and Simplest Properties . . . . . . 50 4.4 A Second Characterization of H-Unitary Matrices . . . . . . . . . 54 4.5 Unitary Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.6 Contractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.7 Dissipative Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.8 Symplectic Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.10 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 x Contents 5 Canonical Forms 73 5.1 Description of a Canonical Form . . . . . . . . . . . . . . . . . . . 73 5.2 First Application of the Canonical Form . . . . . . . . . . . . . . . 75 5.3 Proof of Theorem 5.1.1. . . . . . . . . . . . . . . . . . . . . . . . . 77 5.4 Classification of Matrices by Unitary Similarity . . . . . . . . . . . 82 5.5 Signature Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.6 Structure of H-Selfadjoint Matrices . . . . . . . . . . . . . . . . . . 89 5.7 H-Definite Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.8 Second Description of the Sign Characteristic . . . . . . . . . . . . 92 5.9 Stability of the Sign Characteristic . . . . . . . . . . . . . . . . . . 95 5.10 Canonical Forms for Pairs of Hermitian Matrices . . . . . . . . . . 96 5.11 Third Description of the Sign Characteristic . . . . . . . . . . . . . 98 5.12 Invariant Maximal Nonnegative Subspaces . . . . . . . . . . . . . . 99 5.13 Inverse Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.14 Canonical Forms for H-Unitaries: First Examples . . . . . . . . . 107 5.15 Canonical Forms for H-Unitaries: General Case . . . . . . . . . . . 110 5.16 First Applications of the Canonical Form of H-Unitaries . . . . . . 118 5.17 Further Deductions from the Canonical Form . . . . . . . . . . . . 119 5.18 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 5.19 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6 Real H-Selfadjoint Matrices 125 6.1 Real H-Selfadjoint Matrices and Canonical Forms . . . . . . . . . 125 6.2 Proof of Theorem 6.1.5. . . . . . . . . . . . . . . . . . . . . . . . . 128 6.3 Comparison with Results in the Complex Case . . . . . . . . . . . 131 6.4 Connected Components of Real Unitary Similarity Classes . . . . . 133 6.5 ConnectedComponents ofRealUnitary SimilarityClasses(H Fixed)137 6.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 7 Functions of H-Selfadjoint Matrices 143 7.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 7.2 Exponential and Logarithmic Functions . . . . . . . . . . . . . . . 145 7.3 Functions of H-Selfadjoint Matrices . . . . . . . . . . . . . . . . . 147 7.4 The Canonical Form and Sign Characteristic . . . . . . . . . . . . 150 7.5 Functions which are Selfadjoint in another Indefinite Inner Product 154 7.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 7.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 8 H-Normal Matrices 159 8.1 Decomposability: First Remarks . . . . . . . . . . . . . . . . . . . 159 8.2 H-NormalLinear Transformationsand Pairsof Commuting Matrices163 8.3 On Unitary Similarity in an Indefinite Inner Product . . . . . . . . 165 8.4 The Case of Only One Negative Eigenvalue of H . . . . . . . . . . 166 Contents xi 8.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 8.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 9 General Perturbations. Stability of Diagonalizable Matrices 179 9.1 General Perturbations of H-Selfadjoint Matrices . . . . . . . . . . 179 9.2 Stably Diagonalizable H-Selfadjoint Matrices . . . . . . . . . . . . 183 9.3 Analytic Perturbations and Eigenvalues . . . . . . . . . . . . . . . 185 9.4 Analytic Perturbations and Eigenvectors . . . . . . . . . . . . . . . 189 9.5 The Real Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 9.6 Positive Perturbations of H-Selfadjoint Matrices . . . . . . . . . . 193 9.7 H-Selfadjoint Stably r-Diagonalizable Matrices . . . . . . . . . . . 195 9.8 GeneralPerturbationsandStablyDiagonalizableH-UnitaryMatrices198 9.9 H-Unitarily Stably u-Diagonalizable Matrices . . . . . . . . . . . . 200 9.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 9.11 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 10 Definite Invariant Subspaces 207 10.1 Semidefinite and Neutral Subspaces: A Particular H . . . . . . . . 207 10.2 Plus Matrices and Invariant Nonnegative Subspaces . . . . . . . . 212 10.3 Deductions from Theorem 10.2.4 . . . . . . . . . . . . . . . . . . . 217 10.4 Expansive, Contractive Matrices and Spectral Properties. . . . . . 221 10.5 The Real Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 10.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 10.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 11 Differential Equations of First Order 229 11.1 Boundedness of solutions . . . . . . . . . . . . . . . . . . . . . . . 229 11.2 Hamiltonian Systems of Positive Type with Constant Coefficients . 232 11.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 11.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 12 Matrix Polynomials 237 12.1 Standard Pairs and Triples . . . . . . . . . . . . . . . . . . . . . . 238 12.2 Matrix Polynomials with Hermitian Coefficients . . . . . . . . . . . 242 12.3 Factorization of Hermitian Matrix Polynomials . . . . . . . . . . . 245 12.4 The Sign Characteristic of Hermitian Matrix Polynomials . . . . . 249 12.5 The Sign Characteristic of Hermitian Analytic Matrix Functions . 256 12.6 Hermitian Matrix Polynomials on the Unit Circle . . . . . . . . . . 261 12.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 12.8 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 xii Contents 13 Differential and Difference Equations of Higher Order 267 13.1 General Solution of a System of Differential Equations . . . . . . . 267 13.2 Boundedness for a System of Differential Equations . . . . . . . . . 268 13.3 Stable Boundedness for Differential Equations . . . . . . . . . . . . 270 13.4 The Strongly Hyperbolic Case. . . . . . . . . . . . . . . . . . . . . 273 13.5 Connected Components of Differential Equations . . . . . . . . . . 274 13.6 A Special Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 13.7 Difference Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 278 13.8 Stable Boundedness for Difference Equations . . . . . . . . . . . . 281 13.9 Connected Components of Difference Equations . . . . . . . . . . . 284 13.10Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 13.11Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 14 Algebraic Riccati Equations 289 14.1 Matrix Pairs in Systems Theory and Control . . . . . . . . . . . . 290 14.2 Origins in Systems Theory . . . . . . . . . . . . . . . . . . . . . . . 293 14.3 Preliminaries on the Riccati Equation . . . . . . . . . . . . . . . . 295 14.4 Solutions and Invariant Subspaces . . . . . . . . . . . . . . . . . . 296 14.5 Symmetric Equations. . . . . . . . . . . . . . . . . . . . . . . . . . 297 14.6 An Existence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 298 14.7 Existence when M has Real Eigenvalues . . . . . . . . . . . . . . . 303 14.8 Description of Hermitian Solutions . . . . . . . . . . . . . . . . . . 307 14.9 Extremal Hermitian Solutions . . . . . . . . . . . . . . . . . . . . . 309 14.10The CARE with Real Coefficients. . . . . . . . . . . . . . . . . . . 312 14.11The Concerns of Numerical Analysis . . . . . . . . . . . . . . . . . 315 14.12Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 14.13Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 A Topics from Linear Algebra 319 A.1 Hermitian Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 A.2 The Jordan Form . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 A.3 Riesz Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 A.4 Linear Matrix Equations . . . . . . . . . . . . . . . . . . . . . . . . 335 A.5 Perturbation Theory of Subspaces . . . . . . . . . . . . . . . . . . 335 A.6 Diagonal Forms for Matrix Polynomials and Matrix Functions . . . 338 A.7 Convexity of the Numerical Range . . . . . . . . . . . . . . . . . . 342 A.8 The Fixed Point Theorem . . . . . . . . . . . . . . . . . . . . . . . 344 A.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 Bibliography 349 Index 355

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.