ebook img

Incompressible Flow, Fourth Edition PDF

914 Pages·2013·10.812 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Incompressible Flow, Fourth Edition

Incompressible Flow Incompressible Flow Fourth Edition Ronald L. Panton Coverphotograph:CPeterFirius/iStockphoto Coverdesign:MichaelRutkowski Thisbookisprintedonacid-freepaper. CopyrightC2013byJohnWiley&Sons,Inc.Allrightsreserved PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey PublishedsimultaneouslyinCanada Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorbyany means,electronic,mechanical,photocopying,recording,scanning,orotherwise,exceptaspermittedunder Section107or108ofthe1976UnitedStatesCopyrightAct,withouteitherthepriorwrittenpermissionofthe Publisher,orauthorizationthroughpaymentoftheappropriateper-copyfeetotheCopyrightClearanceCenter, 222RosewoodDrive,Danvers,MA01923,(978)750-8400,fax(978)646-8600,oronthewebat www.copyright.com.RequeststothePublisherforpermissionshouldbeaddressedtothePermissions Department,JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201) 748-6008,oronlineatwww.wiley.com/go/permissions. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsin preparingthisbook,theymakenorepresentationsorwarrantieswiththerespecttotheaccuracyorcompleteness ofthecontentsofthisbookandspecificallydisclaimanyimpliedwarrantiesofmerchantabilityorfitnessfora particularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentativesorwrittensalesmaterials. Theadviceandstrategiescontainedhereinmaynotbesuitableforyoursituation.Youshouldconsultwitha professionalwhereappropriate.Neitherthepublishernortheauthorshallbeliablefordamagesarisingherefrom. Forgeneralinformationaboutourotherproductsandservices,pleasecontactourCustomerCareDepartment withintheUnitedStatesat(800)762-2974,outsidetheUnitedStatesat(317)572-3993orfax(317)572-4002. Wileypublishesinavarietyofprintandelectronicformatsandbyprint-on-demand.Somematerialincluded withstandardprintversionsofthisbookmaynotbeincludedine-booksorinprint-on-demand.Ifthisbook referstomediasuchasaCDorDVDthatisnotincludedintheversionyoupurchased,youmaydownloadthis materialathttp://booksupport.wiley.com.FormoreinformationaboutWileyproducts,visitwww.wiley.com. LibraryofCongressCataloging-in-PublicationData: Panton,RonaldL.(RonaldLee),1933- Incompressibleflow/RonaldL.Panton.—Fourthedition. pagescm Includesindex. ISBN978-1-118-01343-4(cloth);ISBN978-1-118-41573-3(ebk);ISBN978-1-118-41845-1(ebk); ISBN978-1-118-71307-5(ebk) 1.Fluiddynamics.I.Title. TA357.P292013 532(cid:2).051–dc23 2012049904 PrintedintheUnitedStatesofAmerica 10 9 8 7 6 5 4 3 2 1 Contents Preface xi 3.5 AlgebrawithVectors 35 PrefacetotheThirdEdition xiii 3.6 SymmetricandAntisymmetricTensors 37 PrefacetotheSecondEdition xv 3.7 AlgebrawithTensors 38 PrefacetotheFirstEdition xvii 3.8 VectorCross-Product 41 *3.9 AlternativeDefinitionsofVectors 42 *3.10 PrincipalAxesandValues 44 1 ContinuumMechanics 1 3.11 DerivativeOperationsonVectorFields 45 3.12 IntegralFormulasofGaussandStokes 48 1.1 ContinuumAssumption 3 3.13 Leibnitz’sTheorem 51 1.2 FundamentalConcepts,Definitions, 3.14 Conclusions 52 andLaws 3 Problems 53 1.3 SpaceandTime 5 1.4 Density,Velocity,andInternalEnergy 7 1.5 InterfacebetweenPhases 10 4 KinematicsofLocalFluidMotion 54 1.6 Conclusions 12 Problems 13 4.1 LagrangianViewpoint 54 4.2 EulerianViewpoint 57 4.3 SubstantialDerivative 59 2 Thermodynamics 15 4.4 DecompositionofMotion 60 4.5 ElementaryMotionsinaLinear 2.1 Systems,Properties,andProcesses 15 ShearFlow 64 2.2 IndependentVariables 16 *4.6 ProofofVorticityCharacteristics 66 2.3 TemperatureandEntropy 16 *4.7 Rate-of-StrainCharacteristics 68 2.4 FundamentalEquationsof 4.8 RateofExpansion 69 Thermodynamics 18 *4.9 StreamlineCoordinates 70 2.5 Euler’sEquationforHomogenous 4.10 Conclusions 72 Functions 19 Problems 72 2.6 Gibbs–DuhemEquation 20 2.7 IntensiveFormsofBasicEquations 20 2.8 DimensionsofTemperatureandEntropy 21 5 BasicLaws 74 2.9 WorkingEquations 21 2.10 IdealGas 22 5.1 ContinuityEquation 74 2.11 IncompressibleSubstance 25 5.2 MomentumEquation 78 2.12 CompressibleLiquids 26 5.3 SurfaceForces 79 2.13 Conclusions 26 *5.4 StressTensorDerivation 79 Problems 26 5.5 InterpretationoftheStressTensor Components 81 5.6 PressureandViscousStressTensor 83 3 VectorCalculusandIndexNotation 28 5.7 DifferentialMomentumEquation 84 *5.8 MomentofMomentum,AngularMomentum, 3.1 IndexNotationRulesandCoordinate andSymmetryofT 89 ij Rotation 29 5.9 EnergyEquation 90 3.2 DefinitionofVectorsandTensors 32 5.10 MechanicalandThermalEnergy 3.3 SpecialSymbolsandIsotropicTensors 33 Equations 92 3.4 DirectionCosinesandtheLaws 5.11 EnergyEquationwithTemperatureasthe ofCosines 34 DependentVariable 94 v vi Contents *5.12 SecondLawofThermodynamics 94 *8.7 ProofofthePiTheorem 167 5.13 IntegralFormoftheContinuityEquation 95 8.8 DynamicSimilarityandScalingLaws 170 5.14 IntegralFormoftheMomentumEquation 97 8.9 SimilaritywithGeometricDistortion 171 *5.15 MomentumEquationforaDeformable 8.10 NondimensionalFormulationof ParticleofVariableMass 100 PhysicalProblems 174 *5.16 IntegralFormoftheEnergyEquation 103 8.11 Conclusions 179 5.17 IntegralMechanicalEnergyEquation 104 Problems 180 5.18 JumpEquationsatInterfaces 106 5.19 Conclusions 108 9 CompressibleFlow 182 Problems 108 9.1 CompressibleCouetteFlow: AdiabaticWall 182 6 NewtonianFluidsandthe 9.2 FlowwithPowerLawTransport Navier–StokesEquations 111 Properties 186 6.1 Newton’sViscosityLaw 111 9.3 InviscidCompressibleWaves: 6.2 MolecularModelofViscousEffects 114 SpeedofSound 187 6.3 Non-NewtonianLiquids 118 9.4 SteadyCompressibleFlow 194 *6.4 WallBoundaryConditions; 9.5 Conclusions 197 TheNo-SlipCondition 120 Problems 197 6.5 Fourier’sHeatConductionLaw 123 6.6 Navier–StokesEquations 125 10 IncompressibleFlow 198 6.7 Conclusions 125 Problems 126 10.1 Characterization 198 10.2 IncompressibleFlowasLow-Mach-Number FlowwithAdiabaticWalls 199 7 SomeIncompressibleFlowPatterns 127 10.3 NondimensionalProblemStatement 201 7.1 Pressure-DrivenFlowinaSlot 127 10.4 CharacteristicsofIncompressibleFlow 205 7.2 MechanicalEnergy,HeadLoss, 10.5 SplittingthePressureintoKineticand andBernoulliEquation 132 HydrostaticParts 207 7.3 PlaneCouetteFlow 136 *10.6 MathematicalAspectsoftheLimit 7.4 Pressure-DrivenFlowinaSlotwith ProcessM2→0 210 aMovingWall 138 *10.7 InvarianceofIncompressibleFlowEquations 7.5 DoubleFallingFilmonaWall 139 underUnsteadyMotion 211 7.6 OuterSolutionforRotaryViscous *10.8 Low-Mach-NumberFlowswith Coupling 142 Constant-TemperatureWalls 213 7.7 TheRayleighProblem 143 *10.9 EnergyEquationParadox 216 7.8 Conclusions 148 10.10 Conclusions 218 Problems 148 Problems 219 8 DimensionalAnalysis 150 11 SomeSolutionsofthe Navier–StokesEquations 220 8.1 Measurement,Dimensions, andScaleChangeRatios 150 11.1 Pressure-DrivenFlowinTubesofVarious 8.2 PhysicalVariablesandFunctions 153 CrossSections:EllipticalTube 221 8.3 PiTheoremandItsApplications 155 11.2 FlowinaRectangularTube 224 8.4 PumporBlowerAnalysis: 11.3 AsymptoticSuctionFlow 227 UseofExtraAssumptions 159 11.4 Stokes’sOscillatingPlate 228 8.5 NumberofPrimaryDimensions 163 11.5 WallunderanOscillatingFreeStream 231 *8.6 ProofofBridgman’sEquation 165 *11.6 TransientforaStokesOscillatingPlate 234 Contents vii 11.7 FlowinaSlotwithaSteadyandOscillating 13.16 BreakingandReconnectionof PressureGradient 236 VortexLines 317 11.8 DecayofanIdealLineVortex 13.17 VortexBreakdown 317 (OseenVortex) 241 13.18 Conclusions 323 11.9 PlaneStagnationPointFlow Problems 324 (HiemenzFlow) 245 11.10 BurgersVortex 251 11.11 CompositeSolutionfortheRotaryViscous 14 FlowsatModerateReynolds Coupling 253 Numbers 326 11.12 VonKa´rma´nViscousPump 257 14.1 SomeUnusualFlowPatterns 327 11.13 Conclusions 262 14.2 EntranceFlows 330 Problems 263 14.3 EntranceFlowintoaCascadeofPlates: ComputerSolutionbythe 12 Streamfunctionsandthe Streamfunction–VorticityMethod 331 VelocityPotential 266 14.4 EntranceFlowintoaCascadeofPlates: PressureSolution 341 12.1 Streamlines 266 14.5 EntranceFlowintoaCascade 12.2 StreamfunctionforPlaneFlows 269 ofPlates:Results 342 12.3 FlowinaSlotwithPorousWalls 272 14.6 FlowAroundaCircularCylinder 346 *12.4 StreamlinesandStreamsurfacesfora 14.7 Jeffrey–HamelFlowinaWedge 362 Three-DimensionalFlow 274 14.8 LimitingCaseforRe→0;StokesFlow 367 *12.5 VectorPotentialandtheE2Operator 277 14.9 LimitingCaseforRe→−∞ 368 12.6 Stokes’sStreamfunctionfor 14.10 Conclusions 372 AxisymmetricFlow 282 Problems 372 12.7 VelocityPotentialandtheUnsteady BernoulliEquation 283 12.8 FlowCausedbyaSpherewith 15 AsymptoticAnalysisMethods 374 VariableRadius 284 12.9 Conclusions 286 15.1 OscillationofaGasBubbleinaLiquid 374 Problems 287 15.2 OrderSymbols,GaugeFunctions, andAsymptoticExpansions 377 15.3 InviscidFlowoveraWavyWall 380 13 VorticityDynamics 289 15.4 NonuniformExpansions:Friedrich’s Problem 384 13.1 Vorticity 289 15.5 MatchingProcess:VanDyke’sRule 386 13.2 KinematicResultsConcerningVorticity 290 15.6 CompositeExpansions 391 13.3 VorticityEquation 292 15.7 CharacteristicsofOverlapRegions 13.4 VorticityDiffusion 293 andCommonParts 393 13.5 VorticityIntensificationbyStraining 15.8 CompositeExpansionsandData VortexLines 295 Analysis 399 13.6 ProductionofVorticityatWalls 296 15.9 Lagerstrom’sProblems 403 13.7 TypicalVorticityDistributions 300 15.10 Conclusions 406 13.8 DevelopmentofVorticityDistributions 300 Problems 407 13.9 Helmholtz’sLawsforInviscidFlow 306 13.10 Kelvin’sTheorem 307 13.11 VortexDefinitions 308 16 CharacteristicsofHigh-Reynolds-Number 13.12 InviscidMotionofPointVortices 310 Flows 409 13.13 CircularLineVortex 312 13.14 Fraenkel–NorburyVortexRings 314 16.1 PhysicalMotivation 409 13.15 Hill’sSphericalVortex 314 16.2 InviscidMainFlows:EulerEquations 411 viii Contents 16.3 PressureChangesinSteadyFlows: 19.3 FlowoveraWeir 505 BernoulliEquations 414 19.4 PointSource 507 16.4 BoundaryLayers 418 19.5 RankineNoseShape 508 16.5 Conclusions 428 19.6 ExperimentsontheNoseDrag Problems 428 ofSlenderShapes 510 19.7 FlowfromaDoublet 513 17 KinematicDecomposition 19.8 FlowoveraSphere 515 19.9 WorktoMoveaBodyinaStillFluid 516 ofFlowFields 429 19.10 WakeDragofBodies 518 *17.1 GeneralApproach 429 *19.11 InducedDrag:DragduetoLift 519 *17.2 Helmholtz’sDecomposition; *19.12 LiftingLineTheory 524 Biot–SavartLaw 430 19.13 Winglets 525 *17.3 LineVortexandVortexSheet 431 *19.14 AddedMassofAcceleratingBodies 526 *17.4 ComplexLamellarDecomposition 434 19.15 Conclusions 531 *17.5 Conclusions 437 Problems 531 *Problems 437 20 BoundaryLayers 533 18 IdealFlowsinaPlane 438 20.1 BlasiusFlowoveraFlatPlate 533 18.1 ProblemFormulationforPlane 20.2 DisplacementThickness 538 IdealFlows 439 20.3 VonKa´rma´nMomentumIntegral 540 18.2 SimplePlaneFlows 442 20.4 VonKa´rma´n–PohlhausenApproximate 18.3 LineSourceandLineVortex 445 Method 541 18.4 FlowoveraNoseoraCliff 447 20.5 Falkner–SkanSimilaritySolutions 543 18.5 Doublets 453 20.6 ArbitraryTwo-DimensinoalLayers: 18.6 CylinderinaStream 456 Crank–NicolsonDifferenceMethod 547 18.7 CylinderwithCirculationin *20.7 VerticalVelocity 556 aUniformStream 457 20.8 JoukowskiAirfoilBoundaryLayer 558 18.8 LiftandDragonTwo-Dimensional 20.9 BoundaryLayeronaBridgePiling 563 Shapes 460 20.10 BoundaryLayersBeginningatInfinity 564 18.9 MagnusEffect 462 20.11 PlaneBoundaryLayerSeparation 570 18.10 ConformalTransformations 464 20.12 AxisymmtericBoundaryLayers 573 18.11 JoukowskiTransformation:Airfoil 20.13 Jets 576 Geometry 468 20.14 FarWakeofNonliftingBodies 579 18.12 KuttaCondition 473 20.15 FreeShearLayers 582 18.13 FlowoveraJoukowskiAirfoil: 20.16 UnsteadyandEruptingBoundaryLayers 584 AirfoilLift 475 *20.17 EntranceFlowintoaCascade,Parabolized 18.14 NumericalMethodforAirfoils 482 Navier–StokesEquations 587 18.15 ActualAirfoils 484 *20.18 Three-DimensionalBoundaryLayers 589 *18.16 Schwarz–ChristoffelTransformation 487 *20.19 BoundaryLayerwithaConstantTransverse *18.17 DiffuserorContractionFlow 489 PressureGradient 593 *18.18 GravityWavesinLiquids 494 *20.20 Howarth’sStagnationPoint 598 18.19 Conclusions 499 *20.21 Three-DimensionalSeparationPatterns 600 Problems 499 20.22 Conclusions 603 Problems 605 19 Three-DimensionalIdealFlows 502 21 FlowatLowReynoldsNumbers 607 19.1 GeneralEquationsandCharacteristics ofThree-DimensionalIdealFlows 502 21.1 GeneralRelationsforRe→0: 19.2 SwirlingFlowTurnedintoanAnnulus 504 Stokes’sEquations 607

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.