ebook img

Improving Bandwidth Utilization in a 1 Tbps Airborne MIMO Communications Downlink PDF

105 Pages·2013·0.82 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Improving Bandwidth Utilization in a 1 Tbps Airborne MIMO Communications Downlink

IMPROVINGBANDWIDTHUTILIZATIONINA1TBPS AIRBORNEMIMOCOMMUNICATIONSDOWNLINK THESIS JonathanD.Hill,Captain,USAF AFIT-ENG-13-M-25 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTIONSTATEMENTA. APPROVEDFORPUBLICRELEASE;DISTRIBUTIONUNLIMITED The views expressed in this thesis are those of the author and do not reflect the official policyorpositionoftheUnitedStatesAirForce,theDepartmentofDefense,ortheUnited StatesGovernment. This material is declared a work of the U.S. Government and is not subject to copyright protectionintheUnitedStates. AFIT-ENG-13-M-25 IMPROVINGBANDWIDTHUTILIZATIONINA1TBPS AIRBORNEMIMOCOMMUNICATIONSDOWNLINK THESIS PresentedtotheFaculty DepartmentofElectricalandComputerEngineering GraduateSchoolofEngineeringandManagement AirForceInstituteofTechnology AirUniversity AirEducationandTrainingCommand inPartialFulfillmentoftheRequirementsforthe DegreeofMasterofScienceinElectricalEngineering JonathanD.Hill,B.S.E.E. Captain,USAF March2013 DISTRIBUTIONSTATEMENTA. APPROVEDFORPUBLICRELEASE;DISTRIBUTIONUNLIMITED AFIT-ENG-13-M-25 IMPROVINGBANDWIDTHUTILIZATIONINA1TBPS AIRBORNEMIMOCOMMUNICATIONSDOWNLINK JonathanD.Hill,B.S.E.E. Captain,USAF Approved: /signed/ 8Mar2013 RichardK.Martin,PhD(Chairman) Date /signed/ 15Mar2013 LtColJamesA.Louthain,PhD(Member) Date /signed/ 14Mar2013 MajMarkD.Silvius,PhD(Member) Date AFIT-ENG-13-M-25 Abstract ForwardErrorCorrection(FEC)techniquesarecomparedfordifferentMultiple-Input Multiple-Output (MIMO) configurations of a high altitude, extremely wide bandwidth radiofrequencydownlink. MonteCarlosimulationsarecompletedinMATLAB® withthe aim of isolating the impacts of turbo codes and Low-Density Parity Check (LDPC) codes on system throughput and error performance. The system is modeled as a transmit-only static array at an altitude of 60,000 feet, with no interferers in the channel. Transmissions are received by a static receiver array. Simulations attempt to determine what modulation typesshouldbeconsideredforpracticalimplementation,andwhatFECcodesenablethese modulationschemes. Theantennaconfigurationsusedinthisstudyare[44:352],[62:248], and [80:160] transmitters to receivers. Effects from waveform generation, mixing, down- conversion,andamplificationarenotconsidered. Criteria of interest were Bit-Error Rate (BER) and throughput, with the maximum allowable value of the former set at 1×10-5, and the latter set at a 1 terabits per second (Tbps) transfer rate for a successful configuration. Results show that the best performing system configuration was unable to meet both criteria, but was capable of improving over Brueggen’s 2012 research, which used Reed-Solomon codes and a MIMO configuration of [80:160], by 18.6%. The best-case configuration produced a throughput rate of 0.83 Tbps at a BER of less than 1×10-8, by implementing a rate 2⁄ LDPC code with Quadrature 3 AmplitudeModulation(QAM)constellationof16symbols. iv Acknowledgments Anyone who worked with me at any time during the process of completing this program or producing this document, even in the form in now presently exists, knows I would not have made it without their constant support, and a serious amount of Divine intervention. With this in mind, I would like to thank my parents, friends, instructors, and especially Dr. Martin for helping me through. There is an old saying that goes something like this: “Whoever ignores instruction despises himself, but he who listens to reproof gainsintelligence.”Toeveryonewhohaschallengedmetogrow,whetherinsideoroutside ofacademia,thankyou. JonathanD.Hill v TableofContents Page Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v TableofContents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi ListofFigures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix ListofTables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii ListofSymbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv ListofAcronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv I. IntroductionandProblemStatement . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 ProblemStatement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 MethodologyOverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 II. TheoreticalBasisandFoundationalConcepts . . . . . . . . . . . . . . . . . . . 7 2.1 BasicCommunicationSystemArchitecture . . . . . . . . . . . . . . . . . 7 2.2 Interleaving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 BlockInterleaving . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.2 ConvolutionalInterleaving . . . . . . . . . . . . . . . . . . . . . . 9 2.2.3 Non-UniformInterleaving . . . . . . . . . . . . . . . . . . . . . . 10 2.3 ForwardErrorCorrection . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.1 BlockCodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.2 Reed-SolomonCodes . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.3 ConvolutionalEncoders . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.3.1 Non-SystematicConvolutionalCodes . . . . . . . . . . . 12 2.3.3.2 RecursiveSystematicConvolutionalCodes . . . . . . . . 13 2.3.4 ConvolutionalDecoding . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.4.1 MaximumLikelihoodDecoding . . . . . . . . . . . . . 15 2.3.4.2 ViterbiAlgorithm . . . . . . . . . . . . . . . . . . . . . 16 vi Page 2.3.5 TurboCoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.6 TurboEncoderStructure . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.7 TurboDecoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.7.1 ModifiedBCJRAlgorithm . . . . . . . . . . . . . . . . 19 2.3.7.2 IterativeDecoding . . . . . . . . . . . . . . . . . . . . . 23 2.3.8 Low-DensityParityCheckCodes . . . . . . . . . . . . . . . . . . 23 2.3.9 DecodingLDPCCodes . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4 Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4.1 Phase-ShiftKeying . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4.2 QuadratureAmplitudeModulation . . . . . . . . . . . . . . . . . . 25 2.5 Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.5.1 RayleighFadingChannel . . . . . . . . . . . . . . . . . . . . . . . 27 2.5.2 RiceanFadingChannel . . . . . . . . . . . . . . . . . . . . . . . . 28 2.6 MIMOCommunicationSystems . . . . . . . . . . . . . . . . . . . . . . . 29 2.6.1 ChannelCapacity . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.6.1.1 SISOCapacity . . . . . . . . . . . . . . . . . . . . . . . 29 2.6.1.2 MIMOCapacity . . . . . . . . . . . . . . . . . . . . . . 30 2.6.2 MaximumLikelihoodSignalDetection . . . . . . . . . . . . . . . 30 2.6.3 SignalDetectionbyMeansofSingularValueDecomposition . . . . 30 2.6.4 InverseChannelDetection . . . . . . . . . . . . . . . . . . . . . . 31 2.6.5 MinimumMean-SquaredErrorDetection . . . . . . . . . . . . . . 32 2.7 MultipathModeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.7.1 Two-RayGroundReflectionModel . . . . . . . . . . . . . . . . . 33 2.7.2 TappedDelayLineChannelModel . . . . . . . . . . . . . . . . . 33 2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 III. ExperimentalConfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1 SystemModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.1 SystemParameters . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.2 AntennaConfigurations . . . . . . . . . . . . . . . . . . . . . . . 36 3.2 ErrorCorrectionCodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.1 Non-UniformInterleaver . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.2 ConvolutionalCoding . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2.3 TurboEncoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2.4 TurboDecoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2.4.1 DemultiplexingandPunctureRemoval . . . . . . . . . . 43 3.2.4.2 IterativeDecoding . . . . . . . . . . . . . . . . . . . . . 43 3.2.4.3 OverflowPrevention . . . . . . . . . . . . . . . . . . . . 44 3.2.5 TurboCoderPerformance . . . . . . . . . . . . . . . . . . . . . . 46 3.2.6 Low-DensityParityCheckCodes . . . . . . . . . . . . . . . . . . 47 3.3 Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 vii Page 3.4 Demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.5 Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.5.1 MIMOCross-TalkandNoise . . . . . . . . . . . . . . . . . . . . . 52 3.5.2 FadingandMultipath . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.5.3 Two-RayModel . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.5.4 TappedDelayLineModel . . . . . . . . . . . . . . . . . . . . . . 53 3.6 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.6.1 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.6.2 ErrorPerformance . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 IV. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.1 AntennaConfigurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2 CodingMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.2.1 ConvolutionalCodes . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.2.2 TurboCodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2.3 LDPCCodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.3 Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.4 MultipathModelAssessment . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.5 SummaryComments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 V. ConclusionsandRecommendations . . . . . . . . . . . . . . . . . . . . . . . . 71 5.1 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.2 Trade-OffConsiderations . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.3 RelationshiptoPreviousResearch . . . . . . . . . . . . . . . . . . . . . . 72 5.4 FutureResearch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 AppendixA:ViterbiAlgorithmExample . . . . . . . . . . . . . . . . . . . . . . . 74 AppendixB:ImplentationDetails . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 AppendixC:CompleteResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 viii ListofFigures Figure Page 1.1 PhysicalrepresentationofMIMOdownlink . . . . . . . . . . . . . . . . . . . 3 2.1 Genericwirelesscommunicationsystem . . . . . . . . . . . . . . . . . . . . . 8 2.2 StatediagramofaNSCencoderwith K = 3andgeneratorpolynomial[7,5] . . 13 8 2.3 State diagram of a RSC encoder with constraint length of 3 and generator polynomial[7,5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 8 2.4 Rate 1⁄ NSC (left) and RSC (right) encoder trellises with K = 3 and generator 2 polynomial[7,5] forboth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 8 2.5 Basicturboencoderstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6 Iterativedecodingloopforturbodecoding . . . . . . . . . . . . . . . . . . . . 19 2.7 Branchmetricsoverlaidontothetrellisofa[7,5] RSCcode . . . . . . . . . . 22 8 2.8 Example state metric feeding for a [7,5] RSC code trellis. Following (2.10), 8 (2.12) and the trellis paths in Fig. 2.7, α1 = α1 δ0,1 + α2 δ1,2 and β1 = k k−1 k−1 k−1 k−1 k β1 δ0,1 +β3 δ1,1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 k+1 k k+1 k 2.9 ConstellationsforGraycoded8-PSKin(a)and16-QAMin(b) . . . . . . . . . 27 2.10 Theoreticalerrorperformancecomparisonofuncodedmodulationschemesfor channel E /N values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 b 0 3.1 PhysicalrepresentationofMIMOtransmissionpathways . . . . . . . . . . . . 37 3.2 Experimentalsystemblock-diagram . . . . . . . . . . . . . . . . . . . . . . . 37 3.3 RSCencoderwithconstraintlengthof5andgeneratorpolynomial[37,21] . . 40 8 3.4 Iterativedecodingloopforturbodecoding . . . . . . . . . . . . . . . . . . . . 42 3.5 Performanceofarate1⁄ turbocodecomprisedoftwo K = 5rate1⁄ RSCcodes 2 2 withgenerator[37,21] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 8 3.6 Comparisonofrate1⁄ turboandLDPCcodesimplementedforexperimentation 48 2 ix

Description:
Another important decoding algorithm is the Modified Bahl, Cocke, Jelinek, and. Raviv (BCJR) algorithm which will be discussed later along with turbo
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.