IMPROVINGBANDWIDTHUTILIZATIONINA1TBPS AIRBORNEMIMOCOMMUNICATIONSDOWNLINK THESIS JonathanD.Hill,Captain,USAF AFIT-ENG-13-M-25 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTIONSTATEMENTA. APPROVEDFORPUBLICRELEASE;DISTRIBUTIONUNLIMITED The views expressed in this thesis are those of the author and do not reflect the official policyorpositionoftheUnitedStatesAirForce,theDepartmentofDefense,ortheUnited StatesGovernment. This material is declared a work of the U.S. Government and is not subject to copyright protectionintheUnitedStates. AFIT-ENG-13-M-25 IMPROVINGBANDWIDTHUTILIZATIONINA1TBPS AIRBORNEMIMOCOMMUNICATIONSDOWNLINK THESIS PresentedtotheFaculty DepartmentofElectricalandComputerEngineering GraduateSchoolofEngineeringandManagement AirForceInstituteofTechnology AirUniversity AirEducationandTrainingCommand inPartialFulfillmentoftheRequirementsforthe DegreeofMasterofScienceinElectricalEngineering JonathanD.Hill,B.S.E.E. Captain,USAF March2013 DISTRIBUTIONSTATEMENTA. APPROVEDFORPUBLICRELEASE;DISTRIBUTIONUNLIMITED AFIT-ENG-13-M-25 IMPROVINGBANDWIDTHUTILIZATIONINA1TBPS AIRBORNEMIMOCOMMUNICATIONSDOWNLINK JonathanD.Hill,B.S.E.E. Captain,USAF Approved: /signed/ 8Mar2013 RichardK.Martin,PhD(Chairman) Date /signed/ 15Mar2013 LtColJamesA.Louthain,PhD(Member) Date /signed/ 14Mar2013 MajMarkD.Silvius,PhD(Member) Date AFIT-ENG-13-M-25 Abstract ForwardErrorCorrection(FEC)techniquesarecomparedfordifferentMultiple-Input Multiple-Output (MIMO) configurations of a high altitude, extremely wide bandwidth radiofrequencydownlink. MonteCarlosimulationsarecompletedinMATLAB® withthe aim of isolating the impacts of turbo codes and Low-Density Parity Check (LDPC) codes on system throughput and error performance. The system is modeled as a transmit-only static array at an altitude of 60,000 feet, with no interferers in the channel. Transmissions are received by a static receiver array. Simulations attempt to determine what modulation typesshouldbeconsideredforpracticalimplementation,andwhatFECcodesenablethese modulationschemes. Theantennaconfigurationsusedinthisstudyare[44:352],[62:248], and [80:160] transmitters to receivers. Effects from waveform generation, mixing, down- conversion,andamplificationarenotconsidered. Criteria of interest were Bit-Error Rate (BER) and throughput, with the maximum allowable value of the former set at 1×10-5, and the latter set at a 1 terabits per second (Tbps) transfer rate for a successful configuration. Results show that the best performing system configuration was unable to meet both criteria, but was capable of improving over Brueggen’s 2012 research, which used Reed-Solomon codes and a MIMO configuration of [80:160], by 18.6%. The best-case configuration produced a throughput rate of 0.83 Tbps at a BER of less than 1×10-8, by implementing a rate 2⁄ LDPC code with Quadrature 3 AmplitudeModulation(QAM)constellationof16symbols. iv Acknowledgments Anyone who worked with me at any time during the process of completing this program or producing this document, even in the form in now presently exists, knows I would not have made it without their constant support, and a serious amount of Divine intervention. With this in mind, I would like to thank my parents, friends, instructors, and especially Dr. Martin for helping me through. There is an old saying that goes something like this: “Whoever ignores instruction despises himself, but he who listens to reproof gainsintelligence.”Toeveryonewhohaschallengedmetogrow,whetherinsideoroutside ofacademia,thankyou. JonathanD.Hill v TableofContents Page Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v TableofContents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi ListofFigures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix ListofTables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii ListofSymbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv ListofAcronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv I. IntroductionandProblemStatement . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 ProblemStatement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 MethodologyOverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 II. TheoreticalBasisandFoundationalConcepts . . . . . . . . . . . . . . . . . . . 7 2.1 BasicCommunicationSystemArchitecture . . . . . . . . . . . . . . . . . 7 2.2 Interleaving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 BlockInterleaving . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.2 ConvolutionalInterleaving . . . . . . . . . . . . . . . . . . . . . . 9 2.2.3 Non-UniformInterleaving . . . . . . . . . . . . . . . . . . . . . . 10 2.3 ForwardErrorCorrection . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.1 BlockCodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.2 Reed-SolomonCodes . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.3 ConvolutionalEncoders . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.3.1 Non-SystematicConvolutionalCodes . . . . . . . . . . . 12 2.3.3.2 RecursiveSystematicConvolutionalCodes . . . . . . . . 13 2.3.4 ConvolutionalDecoding . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.4.1 MaximumLikelihoodDecoding . . . . . . . . . . . . . 15 2.3.4.2 ViterbiAlgorithm . . . . . . . . . . . . . . . . . . . . . 16 vi Page 2.3.5 TurboCoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.6 TurboEncoderStructure . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.7 TurboDecoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.7.1 ModifiedBCJRAlgorithm . . . . . . . . . . . . . . . . 19 2.3.7.2 IterativeDecoding . . . . . . . . . . . . . . . . . . . . . 23 2.3.8 Low-DensityParityCheckCodes . . . . . . . . . . . . . . . . . . 23 2.3.9 DecodingLDPCCodes . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4 Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4.1 Phase-ShiftKeying . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4.2 QuadratureAmplitudeModulation . . . . . . . . . . . . . . . . . . 25 2.5 Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.5.1 RayleighFadingChannel . . . . . . . . . . . . . . . . . . . . . . . 27 2.5.2 RiceanFadingChannel . . . . . . . . . . . . . . . . . . . . . . . . 28 2.6 MIMOCommunicationSystems . . . . . . . . . . . . . . . . . . . . . . . 29 2.6.1 ChannelCapacity . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.6.1.1 SISOCapacity . . . . . . . . . . . . . . . . . . . . . . . 29 2.6.1.2 MIMOCapacity . . . . . . . . . . . . . . . . . . . . . . 30 2.6.2 MaximumLikelihoodSignalDetection . . . . . . . . . . . . . . . 30 2.6.3 SignalDetectionbyMeansofSingularValueDecomposition . . . . 30 2.6.4 InverseChannelDetection . . . . . . . . . . . . . . . . . . . . . . 31 2.6.5 MinimumMean-SquaredErrorDetection . . . . . . . . . . . . . . 32 2.7 MultipathModeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.7.1 Two-RayGroundReflectionModel . . . . . . . . . . . . . . . . . 33 2.7.2 TappedDelayLineChannelModel . . . . . . . . . . . . . . . . . 33 2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 III. ExperimentalConfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1 SystemModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.1 SystemParameters . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.2 AntennaConfigurations . . . . . . . . . . . . . . . . . . . . . . . 36 3.2 ErrorCorrectionCodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.1 Non-UniformInterleaver . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.2 ConvolutionalCoding . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2.3 TurboEncoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2.4 TurboDecoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2.4.1 DemultiplexingandPunctureRemoval . . . . . . . . . . 43 3.2.4.2 IterativeDecoding . . . . . . . . . . . . . . . . . . . . . 43 3.2.4.3 OverflowPrevention . . . . . . . . . . . . . . . . . . . . 44 3.2.5 TurboCoderPerformance . . . . . . . . . . . . . . . . . . . . . . 46 3.2.6 Low-DensityParityCheckCodes . . . . . . . . . . . . . . . . . . 47 3.3 Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 vii Page 3.4 Demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.5 Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.5.1 MIMOCross-TalkandNoise . . . . . . . . . . . . . . . . . . . . . 52 3.5.2 FadingandMultipath . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.5.3 Two-RayModel . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.5.4 TappedDelayLineModel . . . . . . . . . . . . . . . . . . . . . . 53 3.6 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.6.1 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.6.2 ErrorPerformance . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 IV. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.1 AntennaConfigurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2 CodingMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.2.1 ConvolutionalCodes . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.2.2 TurboCodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2.3 LDPCCodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.3 Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.4 MultipathModelAssessment . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.5 SummaryComments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 V. ConclusionsandRecommendations . . . . . . . . . . . . . . . . . . . . . . . . 71 5.1 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.2 Trade-OffConsiderations . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.3 RelationshiptoPreviousResearch . . . . . . . . . . . . . . . . . . . . . . 72 5.4 FutureResearch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 AppendixA:ViterbiAlgorithmExample . . . . . . . . . . . . . . . . . . . . . . . 74 AppendixB:ImplentationDetails . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 AppendixC:CompleteResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 viii ListofFigures Figure Page 1.1 PhysicalrepresentationofMIMOdownlink . . . . . . . . . . . . . . . . . . . 3 2.1 Genericwirelesscommunicationsystem . . . . . . . . . . . . . . . . . . . . . 8 2.2 StatediagramofaNSCencoderwith K = 3andgeneratorpolynomial[7,5] . . 13 8 2.3 State diagram of a RSC encoder with constraint length of 3 and generator polynomial[7,5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 8 2.4 Rate 1⁄ NSC (left) and RSC (right) encoder trellises with K = 3 and generator 2 polynomial[7,5] forboth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 8 2.5 Basicturboencoderstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6 Iterativedecodingloopforturbodecoding . . . . . . . . . . . . . . . . . . . . 19 2.7 Branchmetricsoverlaidontothetrellisofa[7,5] RSCcode . . . . . . . . . . 22 8 2.8 Example state metric feeding for a [7,5] RSC code trellis. Following (2.10), 8 (2.12) and the trellis paths in Fig. 2.7, α1 = α1 δ0,1 + α2 δ1,2 and β1 = k k−1 k−1 k−1 k−1 k β1 δ0,1 +β3 δ1,1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 k+1 k k+1 k 2.9 ConstellationsforGraycoded8-PSKin(a)and16-QAMin(b) . . . . . . . . . 27 2.10 Theoreticalerrorperformancecomparisonofuncodedmodulationschemesfor channel E /N values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 b 0 3.1 PhysicalrepresentationofMIMOtransmissionpathways . . . . . . . . . . . . 37 3.2 Experimentalsystemblock-diagram . . . . . . . . . . . . . . . . . . . . . . . 37 3.3 RSCencoderwithconstraintlengthof5andgeneratorpolynomial[37,21] . . 40 8 3.4 Iterativedecodingloopforturbodecoding . . . . . . . . . . . . . . . . . . . . 42 3.5 Performanceofarate1⁄ turbocodecomprisedoftwo K = 5rate1⁄ RSCcodes 2 2 withgenerator[37,21] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 8 3.6 Comparisonofrate1⁄ turboandLDPCcodesimplementedforexperimentation 48 2 ix
Description: