ScienceoftheTotalEnvironment610–611(2018)276–290 ContentslistsavailableatScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Improvement of the drought indicators system in the Júcar River Basin, Spain TatianaOrtega-Gómeza,⁎,MiguelA.Pérez-Martínb,TeodoroEstrelaa,b aConfederaciónHidrográficadelJúcar(CHJ)JúcarRiverBasinAuthority,Avd.BlascoIbáñezno48,46010,Valencia,Spain bResearchInstituteofWaterandEnvironmentalEngineering(IIAMA),UniversitatPolitècnicadeValencia,CaminodeVeras/n,46022,Valencia,Spain H I G H L I G H T S G R A P H I C A L A B S T R A C T • SPI-12orSPI-24canbeusedtodefine the “prolonged drought” required by EU. • There is a high correlation between operationaldroughtindicesandlong- termSPI. • Moisture content index is correlated withtheshort-termprecipitationindex. • Variousindicesarenecessarytodetect differenttypesofdrought. • A unique aggregated indicator could hideasignificantdroughtinaspecific area. a r t i c l e i n f o a b s t r a c t Articlehistory: Droughtsareoneofthegravestnaturalthreatscurrentlyexistingintheworldandtheiroccurrenceandintensity Received15June2017 mightbeexacerbatedinthecomingyearsduetoclimatechange.Thesevereimpactsthatdroughtscausetoin- Receivedinrevisedform27July2017 landwaterresourcesandtotheassociatedsocio-economicactivitiesjustifythecontinuousmonitoringofthe Accepted28July2017 drought.Thecasestudypresentedshowsapracticalapplicationofadistributeddroughtmonitoringsystemim- Availableonline11August2017 plementedinarealriverbasindistrict,theJúcarRiverBasinDistrict(43,000km2),wheredroughtperiodsof markedintensityhaveoccurredhistoricallyandtheclimaterangesfromhumidinthenorthtosemiaridinthe Editor:D.Barcelo south.Fivedroughtindiceshavebeenapplied:StandardisedPrecipitationIndex(SPI)formeteorological Keywords: drought;PalmerDroughtSeverityIndex(PDSI)andanewsoilmoistureindex(HI),foredaphicdrought;Normal- distributeddroughtmonitoring isedDifferenceVegetationIndex(NDVI)forthevegetationactivity;andSpanishStatusIndex(SI),fortheoper- droughtindices ationaldrought.Allindicesarestandardisedtocomparethem. remotesensing TherelationshipbetweenthestandardisedoperationaldroughtindexSIandthelong-termmeteorologicalindi- prolongeddrought ces,SPI-12orSPI-24,showthatinamediumsizebasintheconceptof“prolongeddrought”requiredbytheEu- ropeanCommission undertheWaterFrameworkDirectivecouldbedefinedbytheuseof accumulated precipitationindices.Thenumberofmonthstobeaccumulateddependsonthesizeofthebasinandthewater managementsystemproperties.Inlargebasins,suchastheJúcarriverbasin(22,000km2),therearesignificant deviationsduetothespatialdistributionofthedrought.Theuseofauniqueaggregatedindicatorcouldhidea significantdroughtinaspecificarea,orontheotherhandshowanon-realdrought.Evolutionofdroughtindices foreachwatermanagementsystemmustbeaccompaniedbyspatiallydistributeddroughtmapstobetterunder- standthedroughtstatusanditsevolution. ©2017ElsevierB.V.Allrightsreserved. ⁎ Correspondingauthor. E-mailaddress:[email protected](T.Ortega-Gómez). http://dx.doi.org/10.1016/j.scitotenv.2017.07.250 0048-9697/©2017ElsevierB.V.Allrightsreserved. T.Ortega-Gómezetal./ScienceoftheTotalEnvironment610–611(2018)276–290 277 1.Introduction circumstances are exceptional or could have not reasonably been foreseen. Droughtsareanaturalhazardfortheenvironment,theeconomy Thismanuscriptincludestheapplicationofasetofspatiallydistribut- andthesocialdevelopment.Althoughbyitselfisnotadisaster,whether eddroughtindicatorsinarealcase,theJúcarRiverBasinDistrict(RBD), itbecomesonedependsonitsimpactsonsocietyandenvironment whichisalargedistrict(43,000km2)formedbytheaggregationofseveral (WilhiteandBuchanan-Smith,2005).Droughtsarepresentallover riverbasinsandislocatedintheSpanishMediterraneanarea.TheJúcar theworldandaffectthearidandsemi-aridregionsandalsohumid RBD includes nine water resources systems with different climates, andsub-humidregions(MishraandSingh,2010).Thespatialextension, fromhumidtosemiarid,sothedroughtindiceswouldbetestedindiffer- fromlocaltoregionalscale,andthedurationintime,fromweeksto entclimateconditions.Climatechangecouldbeasignificantimpactinthe years,alsocanbeveryvariable(Andreuetal.,2015).Droughtsarea naturalresourcesofthisriverbasin(Estrelaetal.,2012)anddrought slow-onsetnatural hazard(Sivakumar et al., 2011),whichappears couldbeincreasedinnumberandintensityinthefuture(Pérez-Martín whenprecipitationisunderthenormalvaluesduringaperiodoftime. etal.,2015).Thestandardisedformoffivetypesofindicesareapplied: Theunusuallowvaluesofprecipitationcanbetransferredinafast formeteorologicaldrought,theStandardisedPrecipitationIndex(SPI; way(weeksorafewmonths)toothercomponentsofthehydrological McKeeetal.,1993);foredaphicdrought(agricultural)amodifiedPalmer cycle(soilmoisture,riverflows),oronthecontrary,inamuchslower DroughtSeverityIndex(PDSI,Palmer,1965)andanexpresslycreated one(manymonthsorevenyears)toothercomponentsofhydrological HumidityIndexinsoil(iHI);forthevegetationresponse,thestandardised cyclesuchaspiezometriclevelsorgroundwaterdischarges.Dueto NormalisedDifferenceVegetationIndex(iNDVI;Jordan,1969),andfor thesecharacteristics,theDroughtManagementPlanshavedemonstrat- theoperationaldrought,thestandardisedStatusIndex(iSI). edtobevaluablemanagementtoolstofightthistypeofanomalies TheiSIandiNDVindicesaredirectlyderivedfromobserveddataand (EstrelaandVargas,2012). reflecttherealsituationobservedintheriverbasin.Thefirstonemainly TheDroughtIndicatorSystemhasasignificantroleinthedeclara- indicatestheamountofavailablewatertosupplywaterdemands.The tionofadroughtandintheapplicationofthemeasuresdefinedinthe secondoneindicatesthevegetationactivityinamonthiNDVI,inasea- DroughtManagementPlans(EstrelaandSancho,2016).TheDrought son(threemonths)iNDVI-3orduringsixconsecutivemonthsiNDVI-6, IndicatorSystemisapowerfultooltosupportthewatermanagers derivedfromtheEOS-AquasatelliteequippedwiththeMODISsensor. andfinaluserstounderstandhowandwherethedroughthasbeenoc- Themeteorological(SPI)andedaphic(PDSIandiHI)indicesarederived curring.Thereisawiderangeofdroughtindicatorstodetermineeach fromprecipitationandtemperaturedata.Differentmonthlyaccumula- typeofdrought:meteorological,definedasalackofprecipitationover tionsforSPIareconsideredfortheshort-term(SPI,SPI-3,SPI-6)and aregionforaperiodoftime;hydrological,relatedtoaperiodwithinad- thelong-term(SPI-12andSPI-24).ThemodifiedPDSIandtheiHIare equatesurfaceandsubsurfacewaterresourcesforestablishedwater obtained by the water balance in soil calculated with the Patrical usesofagivenwaterresourcesmanagementsystem;agricultural,refers model(Pérez-Martínetal.,2014). toaperiodwithdecliningsoilmoistureandconsequentcropfailure TheremaindermanuscriptincludesinsectiontwotheDataSetand withoutanyreferencetosurfacewaterresources;andsocio-economic theindicesused.Thethirdsectiondescribesthestudycaseresults.Dis- drought,associatedwithfailureofwaterresourcessystemstomeet cussionisincludedinthefourthsectionandfinally,thefifthsectioncon- waterdemands(MishraandSingh,2010).Anextensiverevisionof tainstheconclusions. droughtindicesisincludedinMishraandSingh(2010)andPedro- Monzonísetal.(2015).Besides,remotesensingprovidesasynoptic 2.Datasetandindicesused viewoftheEarth,andisanadvantageoussourceofinformationineval- uatingthedroughtimpacts(QuiringandGanesh,2010). TheJúcarRiverBasinDistrict(JRBD)islocatedintheeasternpartof ThecurrentDroughtIndicatorSysteminSpainisformedbasicallyby theIberianPeninsulainSpainandisformedbytheaggregationofriver anoperationaldroughtindex,theStatusIndex(SI).Thisindexreflects basinsthatflowintotheMediterraneanSea.Thewholeterritoryin- theamountofavailablewaterfortheendusersineachmonth,inrela- cludes nine water resources systems (WRS or system), 1) Cenia- tionwiththeamountofavailablewaterforthatmonthhistorically.This Maestrazgo,2)Mijares-PlanadeCastellón,3)PalanciaylosValles,4) indexisusefultocharacterisethesocio-economicdrought.Theindex Turia, 5) Júcar, 6) Serpis, 7) Marina Alta, 8) Marina Baja and 9) consistsofselectedcontrolpointsdistributedthroughouttheSpanish Vinalopó-Alacantí,anditstotalareaisaround42.735km2(Fig.1).The RiverBasinDistrictswhichincludethefollowinginformation:volume JúcarRBDpresentsaMediterraneanclimate.Thetotalannualprecipita- storedinsurfacereservoirs;groundwaterinaquifers;riverflowdis- tionisaround500mm,oscillatingbetweenmaximumannualvaluesof charges; reservoir inflows and precipitations in those areas where 780mmforthewetyearsandjustover300mmforthedryyears.Pre- theyaresignificantinrelationtothewaterresourcesavailabilitytosup- cipitationintheautumnisalmosthalfoftheannualprecipitationinthe plythemainwaterdemands(EstrelaandVargas,2012).Thisindexisan coastalarea.Thesecondhighestvalueoccursduringthespringand, aggregatedindexforsocio-economicdroughtineachwaterresources duringthesummer,rainisalmostnon-existent.Thesamevariability system,whichshouldbecomplementedwithasetofotherindicators canbeobservedinregardstospatialdistribution.Thereareareassuch thatshowtherestofdroughttypesandtheirspatialvariability. asMarinaAltawithaverageannualvaluesaround730mm,andmaxi- Recently,in2016,theRoyalDecreebywhichSpanishriverbasin mumvaluesof1.325mm,whereasotherareaslikeVinalopó-Alacantí managementplanswereapprovedestablishedthatindicatorsystems receivemuchlessrainfall,withaverageannualvaluesof345mmand ofRiverBasinAuthoritiesshouldbeabletoseparatelydiagnosesitua- minimumvaluesof190mm.Approximately80%ofthetotalwaterre- tionsofdroughtandwaterscarcity.TheEuropeanWaterFrameworkDi- ceived in the form of precipitation is returned to the atmosphere rectivedeterminesthattemporarydeteriorationinthestatusofwater throughevaporation,whiletheremaining20%isgroundwaterandsur- bodiesshallnotbeinbreachoftherequirementsofthisDirectiveif facerunoff(Pérez-Martínetal.,2014).Theannualvalueofpotential thisistheresultofcircumstancesofnaturalcauseorforcemajeure evapotranspirationfortheperiod1940/41–2010/11is890mm/year, whichareexceptionalorcouldnotreasonablyhavebeenforeseen,in actual evapotranspiration is around 409 mm/year, infiltration is particularextremefloodsandprolongeddroughts,ortheresultofcir- 64mm/year,surfacerunoffis31mm/yearandtotalrunoffisabout cumstancesduetoaccidentswhichcouldnotreasonablyhavebeen 95mm/year(Pérez-Martínetal.,2014). foreseen.TheEuropeanCommission(EC,2007)indicatesthattheiden- TheJúcarRBDhasapopulationofaround5millionpeople(11%of tificationofsituationsofprolongeddroughtshouldbeperformedusing the Spanish population) and has an irrigated surface of about naturalindicatorsbasedonprecipitationasthemainunderlyingparam- 389.000hamainlyconcentratedinthelowerMijares,Palancia,Turia etertoindicatethatitisa‘naturalcauseorforcemajeure’,andthatthe andJúcarbasins,theregionofManchaOriental,andtheirrigatedvalleys 278 T.Ortega-Gómezetal./ScienceoftheTotalEnvironment610–611(2018)276–290 Fig.1.LocationoftheJucarRiverBasinDistrictandtheninewaterresourcessystems:1)Cenia-Maestrazgo,2)Mijares-PlanadeCastellón,3)PalanciaylosValles,4)Turia,5)Júcar,6) Serpis,7)MarinaAlta,8)MarinaBajaand9)Vinalopó-Alacantí. oftheVinalopóandMonegrerivers.Thisterritoryhashistoricallybeen VegetationIndex(NDVI).Themeteorologicaldatainrealtimecome markedbyperiodsofintensivedroughtsthathavecompromisedthe fromtheJúcarAutomaticHydrologicalInformationSystem(SAIHin management of water resources in the Júcar RBD. The Júcar River Spanish;Estrela,etal.,2007).TheSAIHincludes181raingaugesand BasinAuthorityguaranteesthesupplyoflargepopulationslikethe 24thermometers(Fig.2)with5-minutesdatafrom1991to2015and cityofValencia,AlbaceteandTeruel,andisresponsibleforthewater othertemporalaggregations,suchasdailyormonthlytimestep.The supplyofirrigatedareas,andotherrecreational,industrialandenergy sparsedensityofavailablethermometersatthestartoftheseriesjusti- wateruses,aswellasforthecompliancewiththeenvironmentalre- fiedtheuseofothersourcesofdailytemperature,sotheSAIHtemper- quirements.Inordertosatisfythesedemands,theDistrictcountson ature series has been completed with data from the Spanish 27majorreservoirsandatotalwaterstoragecapacityof3,300hm3. MeteorologicalStateAgency(AemetinSpanish). Alarcón, Contreras and Tous are the biggest reservoirs in the river MonthlymeteorologicaldatacomingfromSAIH,precipitationand JúcarandBenagéberintheTuria(Fig.1).Afurtherdescriptionisinclud- temperature,werepreviouslyvalidated.Thevalidationprocessincludes edinFerreretal.(2012). twoprocesses:thefirstprocessistheautomaticidentificationofpossi- Thebasicgeographicalunitusedinthisstudyisthewaterresources bleoutliersbasedontheapplicationoftwooutliers'detectionmethods: system(WRSorsystem).Thisallowsdiscretisingthespatialareaof aseasonal-trenddecompositionprocedurebasedonLOESS(Cleveland droughtinsmallerterritorialunitswithacharacteristichydro-meteoro- etal.,1990)andaLOFmethod(Breuningetal.,2000).Thesecondpro- logicalbehaviourwithintheglobalscopeoftheDistrict.Inaccordance cessisadetailedanalysisoftimeseries,dailyand5-minutestimestep, withtheSpanishHydrologicalPlanningRegulation,awaterresources ofthepossiblemonthlyoutliersdetected. systemisformedbysurfacewaterbodies,groundwaterbodies,hydrau- Itwasfoundthatsomeoftheobservationsshowapatternofunusual licinfrastructureworksandwateroperationrulesthatallowestablish- behaviour.Inthoseraingaugeslocationswhereextremevalueswere ingthewatersupplybasedontheavailableresourcesandincompliance recorded,intensitycurveswerereviewedandthereturnperiodfor withenvironmentalobjectives. eachrecordwascalculated(CEDEX,1999)and,whereappropriate, someanomalieswerecorrectedincollaborationwithtechniciansfrom 2.1.Dataset theSAIHoftheJúcarRBA. TheNormalisedDifferenceVegetationIndex,NDVI,comesfromthe Indicesarecalculatedfrommonthlymeteorologicaldata,precipita- product MYD13Q1 from the EOS-Aqua satellite which is equipped tionandtemperature,andsatellitedata,15daysNormalisedDifference withtheMODIS(ModerateResolutionImagingSprectroradiometer) T.Ortega-Gómezetal./ScienceoftheTotalEnvironment610–611(2018)276–290 279 Fig.2.PrecipitationandtemperatureSAIHnetwork. sensor.Thesatellitedataseriescoverstheperiod2002–2015.TheNDVI 2.2.Indicesused valueswereextractedwhenthesatellitesweepsthesurfaceoftheJúcar RBDaround13h30UTC,whenvegetationismorestressed.Thesensor Fivedroughtindicesareanalysedinthemanuscript(Table1):the hasaviewingswathwidthof2330kmthatcoverstheentiresurface StandardisedPrecipitationIndex(SPI;McKeeetal.,1993),amodified oftheEartheveryday.Theimagesaresuppliedin.hdfformat,designed PalmerDroughtSeverityIndex(PDSI,Palmer,1965),thestandardised tostorelargeamountsofdigitaldataandaregeographicallyreferenced NormalisedDifferenceVegetation Index (iNDVI; Jordan,1969), the toasphericalcoordinatessystem.Thetemporalresolutionistherefore standardisedStatusIndex(iSI)derivedfromtheSpanishStatusIndex 16daysandthespatialis250m2. (SI)andtheexpresslycreatedHumidityIndexinsoil.Adetailedreview ThedownloadingoftheimagescoveringtheterritoryoftheJúcar of the indices is included in Mishra and Singh (2010) and Pedro- RBDwasautomated.SinceJuly2002ithasprovidedoneortwoimages Monzonísetal.(2015). permonth.Eachimageisformedbytheunionoffourscenes:h17v04 ThefirsttwoindicesareintegratedintheGIS-basedmonthlywater (Scene1),h17v05(Scene2),h18v04(Scene3)andh18v05(Scene4). balancemodelPatrical,whichisahydrologicalandwaterqualitydis- Next,thetwomonthlyimages(eightscenes)coveringthescopeof tributedsimulationmodel(Pérez-Martínetal.,2014;Pérez-Martínet theJúcarRBDwereunifiedinasinglerasterimageaveragingNDVI al.,2016).Themodelisusedforthewaterresourcesassessmentofthe valuesineachpixeloverlap. riverbasin,includinglong-termresources,spatialvariability,inter- TheNDVIsatelliteimagesprovidedirectvalueofthisvariableorigi- andintra-annualvariability,climatechangeimpactandfortheanalysis nallyformulatedinaccordancewiththefollowingrelationshipbetween ofthetemporalevolutionofprocesseswithhigherinertia,suchasni- thereflectancedetectedbythesensorinthespectralbandsofredand tratepollutioningroundwaterbodies.Themodelhasaresolutionof near-infrared(Eq.(1)): 1000×1000mandhasbeenappliedthroughoutSpain;itsresultsare usedbydifferentSpanishRiverBasinAuthorities.ThePatricalmodel ρNIR−ρred hasdevelopedanextensionforthecreationoffullydistributedmaps NDVI¼ ð1Þ ρNIRþρred (1km×1km)ofSPI,PDSIandiHI,whichcanalsobeprocessedwith theArc-GISprogrammeuntilthedesireddisplayisobtained. where:ρNIRisthereflectancedetectedinthespectralbandofnear-in- MonthlymapsofStandardisedPrecipitationIndexfordifferentaccu- fraredandρredisthereflectancedetectedinthespectralbandofred. mulationperiods(SPI-1,SPI-3,SPI-6,SPI-12ySPI-24)arecalculated Table1 Droughtindicesanddataemployed. StandardisedIndex Typeofdrought Datasource Process monitoring SPI(McKeeetal.,1993)Shorttime:SPI,SPI-3,SPI-6Long Meteorological SAIHPrecipitationstations Areal time:SPI-12,SPI-24 precipitation PDSI(Palmer,1965) Edaphic SAIHPrecipitationandTemperaturestationsfromandNational Waterbalance MeteorologicalAgency(Aemet) insoil iHI(Ortega,2015)iHI,IHI-3 Edaphic SoilmoistureobtainedbyPatricalWaterBalanceModel. Waterbalance insoil iNDVI(derivedfromNDVI,Jordan,1969)iNDVI,iNDVI-3, Edaphic Greennessofvegetation(NDVI)recordedbysatelliteimages.MODIS Standardised iNDVI6 sensor index iSI(Ortega,2015)(derivedfromdeSI) Operational ReservoirStoragesfromSAIHPiezometriclevels.Groundwater Standardised monitoringnetwork index 3-monthStream-flowsfromSAIH 12-monthPrecipitationfromSAIH 280 T.Ortega-Gómezetal./ScienceoftheTotalEnvironment610–611(2018)276–290 basedonnormalised(log-normaldistributionfunction)accumulated explained above is applied to obtain the spatial distributed iHI-3, precipitation(1,3,6,12and24months).Shortaccumulationperiods iNDVI-3andiNDVI-6indices. determinewhenthemeteorologicaldroughtstartsanditsdistribution TheStandardisedStatusIndex(iSI)wascalculatedbythemonthly overtheterritory.Long-accumulationperiods,SPI-12orSPI-24,reflects standardisation(Eq.(2))oftheSpanishStatusIndex(SI).TheStatus thepatternofbehaviourofthelong-termrainfall,andcouldalsoserve Index(SI)isappliedinalltheSpanishRiverBasinsandismonthlyup- inthedefinitionoftheconceptof“prolongeddrought”(EC,2007)in dated(Fig.3)intheNationalDroughtIndicatorSystem(MMA,2007). theJúcarRBD.Also,theSpanishMeteorologicalStateAgencycarries Thissystemallowsmakingtheformaldeclarationofadroughtinthe outthemonthlyfollow-upofmeteorologicaldroughtandpublishes SpanishRiverbasinorganisations.Thisstatementimpliestheentry theSPIindexmapsforthenationalscope(www.aemet.es). into force of the drought management plans called “Special action MonthlymapsofthemodifiedPalmerDroughtSeverityIndex,PDSI, plansinsituationsofalertandtemporarydrought”,wherethewaterre- areobtainedfromthewaterbalanceinsoiloriginatedbythePatrical sourcessystems'exploitationrulesandmeasurestobeappliedare model,whichisthebestcalibratedandvalidatedmodelfortheJúcar establishedinregardtotheuseofwaterduringthedifferentphasesof RBD (Pérez-Martín et al., 2014). The water balance proposed by adrought. Palmer(1965)thatisdevelopedpreviouslyinordertocalculatethe Thisindicatorssystemisformedbyadistributednetworkofcontrol PDSI is replaced by the more accurate water balance for this river pointsandcollectsinformationaboutreservoirstorages,groundwater basincalculatedbythePatricalmodel.PDSIinputdataarethemonthly piezometric levels, stream flows, and precipitation (MMA, 2007; precipitationandtemperaturedata. EstrelaandSancho,2016).EachSpanishriverbasinorganisationhas Droughtindicesthatincludeprecipitationandtemperaturearecur- chosenfortheSIdefinition,theindicators(variables)thatbestdescribe rentlyrequiredduetothechangesobservedandpredictedbyclimate thewaterresourcessystems'behaviourineachterritory(Estrelaand changeintemperature.ThePDSIhasbeenusedintheJúcarRBDtode- Vargas,2012),ensuringageneralhomogeneityatthenationalscale. terminetheeffectofclimatechangeinthedurationandintensityofthe TheStatusIndexiscalculatedbythefollowingexpressions(Eq.(3)): currentdroughts(Pérez-Martínetal.,2015)andalsotheStandardised (cid:1) (cid:3) PrecipitationEvaporationIndex(SPEI;Vicente-Serranoetal.,2010), 1 Vi;t−Vmed;t Vi;t≥Vmed;t→SIi;t¼ 1þ whiAchnieswamdrooduigfihctatiinodneoxfbthaeseSdPIotnhatthienvclaurdiaebslteemsopilemratouisretu.reispro- Vi;tbVmed;t→SIi;t¼ 2 Vi;t−VVmmaxi;nt;−tVmed;t ð3Þ posed,theStandardisedHumidityIndex(iHI).TheiHIhasasinput 2ðVmed;t−V min;tÞ data monthly precipitation and temperature. The index, for one monthiHIandforthree-averagemonthsiHI-3,iscalculatedfromthe where:V istheStatusindexfortheyeariandmontht;V istheindi- i,t i,t soilmoistureobtainedbythePatricalmodel.Theaimofthisindexis catorvaluefortheyeariandmontht,V V andV arethe med,t, max,t min,t toknow,inaneasytounderstandanddirectway,therelativeamount monthly(t=1to12)statistics(mean,maximumandminimum)of ofwaterinthesoil,whichcouldbeusedbythevegetationinamonth theindicatorvaluesinthereferenceperiod. orin aseason(threemonths) andexploreitrelationship withthe TheintegratedvaluesofSIforthedifferentRiverBasinsorfortheen- otherindices.TheiHI-3reflectstheseasonalbehaviourofsoilmoisture, tireRiverBasinDistrictareobtainedastheweightedsumoftheindivid- whichisassociatedwithmedium-termprecipitation,andthereforeit ualindexesrepresentingtheavailablewaterresources.Theweightof shouldbelinkedwiththebehaviourofPDSIandiNDVI. eachindividualindexisbasedmainlyontheamountofwaterdemand Themonthlystandardisation(Salasetal.,1980)isdevelopedfor thatwaterresourcesrepresentedbytheindexissupplyingandthe monthlysoilmoistureorthree-averagesoilmoisture(Eq.(2)). levelofguaranteerequiredbyeachwaterdemandunit.Theintegrated indexallowsclassifyingtheriverbasinsinfourtypesofhydrologicsta- Xv;t‐μt tuses(normality,pre-alert,alertandemergency)thatassesstherestric- Yv;t¼ ð2Þ σt tionrisksinthevariouswaterdemandunitsofthesystems. The SI has therefore an advantage over the meteorological and where:Y istheresultingstandardisedvariablefortheyearvand edaphicindicesinthedroughtmanagementofawaterresourcessys- v,t month t;X is theoriginal variable; μ andσ are respectively the tem,becauseitislinkedtothedemandstobemetandthewaterre- v,t t t monthlyt(1to12)meanandstandarddeviationoftheoriginalvariable sources that are used to meet them. In addition, the weighting forthereferenceperiod. coefficientsandthethresholdsdefiningthetypesofhydrologicalstatus Maps of Standardised Normalised Difference Vegetation Index, havebeenestimatedtakingintoaccountactualwaterresourcessys- iNDVI,areobtained by applyingthestandardisation procedurede- tems'deficits. scribedabove(Eq.(2))totheNDVIvariable(greennessofvegetation) IntheJúcarRBD,theSIsummarisesdroughtsituationsbymeansof directlyextractedfromthesatelliteimages.TheJúcarRBDirrigated 34indicatorslinkedtowaterresourcesavailabilitytosatisfywaterde- areasmightaffecttheinterpretationintheevolutionoftheNDVIvari- mands(Fig.4a).Arealprecipitationgaugingstations,aquiferwater able.Theseareasinvolveanalterationofthenaturalhydrologicalcycle levelmonitoringnetwork,stream-flowsandreservoirinflowsrecorded regimeduetotheartificialsupplyofwaterforirrigation,whichaffects bygaugingstationsandreservoirstoragesobtainedfromSAIH.Those thevegetatedlandarea.Theproceduredevelopedforcalculatingthe indicatorsareallweightedatthewaterresourcessystemscale,depend- zonal(waterresourcessystem)monthlyNDVIvaluesincludetwover- ingonthedemandstheymeet,uptoalimitlowerthan10hm3/year. sions,withandwithouttheirrigationlandexistingintheJúcarRBD. TheresultsoftheirmonthlyapplicationintheJúcarRBDarepublished Thus,thezonaliNDVIhasasecondversionwithouttheirrigationland inthedroughtindicatorsfollow-upreportoftheJúcarRiverBasinAu- (iNDVI ).MonthlystatisticvaluesoftheNDVIvariable(range,average, thority(Fig.4b),whichisaccessiblethroughthewebpageofJúcar w minimum,maximumandstandarddeviation)werethencalculatedper RiverBasinAuthority(www.chj.es). waterresourcessystem. TheiHI-3,iNDVI-3andiNDVI-6indicesrequirethreemonthsaccu- 3.Results mulatedvalues,soitisnecessarytouseaPythonscriptcreatedfor this purpose to automate the task in ArcGIS. Basically, the script ThestudycaseshowsapracticalapplicationofaDroughtMonitoring consistedofamovingwindowof3itemswhichrunstheentireseries Systemimplementedinarealriverbasindistrict,theJúcarRiverBasin oftheinputrastermaps(soilmoistureandNDVI),creatinganewout- District.DroughtindicesdefinedinTable1areappliedtotheentire putrasterthatincludesthethree-monthaccumulatedoriginalvariable. riverbasin.Droughtshavethree-dimensionalcomponents,spatialdis- Oncetheaccumulatedvariableiscreated,thestandardisationprocess tribution(twodimensional)andtemporalevolution(thirddimension). T.Ortega-Gómezetal./ScienceoftheTotalEnvironment610–611(2018)276–290 281 Fig.3.NationaldroughtindicatorsystemAprilandMay2017(Source:www.mapama.es)andStatusindexdefinitionandriskclassification(MMA,2007). Twoanalysesaredeveloped:MappingDroughtIndicesalongtimeand meteorologicalconditionsoftheJúcarRiverBasinDistrict(Table2).In aggregated TimeSeries DroughtIndices for adetermined area,the thecaseofSPI,iHIandiHI-3indicestheoriginalvaluerangewasmod- waterresourcessystem. ifiedfromseventoninelevelsandthenormaltypewasdividedinto Mappingdroughtindicesallowsknowingthespatialdistribution threecategories.InthecaseofPDSIandiNDVI-3indicesaclassification andthespatialdroughtevolution,andcanhelptobetterunderstand isdividedintoelevenlevels,whichseparatesthenormaltypeintofive thedroughtevolutionanditsconsequencesalongtime. categories. TimeSeriesofDroughtIndicesforaspecificarea,suchasthewater Recently,ameteorologicalandedaphicdroughtoccurredinthemid- resourcessystem,areusefultoexplorethedependencyandrelation- dleandlowerbasinsoftheJúcarRBDduringtheyear2014(theanom- shipsbetweendifferentindices.Fromtheseresultstherelationships alyendedinDecemberof2014).Themainsystemsaffectedfromnorth thatmaybeconsideredstatisticallysignificant,havebeenestablished. tosouthwere:middleandlowerMijares,TuriaandJúcarandtheentire Vinalopó system. Howevertheupperriverbasinsof thesesystems 3.1.MappingGIS-basedindices (Mijares,TuriaandJúcar)wereunderwetconditions,sothewatergen- erationintheseareaswasnormalorabovenormalinthatyear. Differentcolourclassificationsareadoptedtobettercomparethe Thespatialdistributionofthedroughthasdeterminantimplications drought indicators. A more detailed classification to the usually onwatermanagement.Duringthatyear,2014,thewaterresourcesgen- employedbytheUniversityofNebraska-Lincolnisadoptedtorepresent erationintheupperriverbasinswasnotaffected.Theseareasprovide themapsinordertoadaptthemappingresultstotheregionalhydro- thenaturalinflowstothemajorreservoirsoftheRiverBasinDistrict. Fig.4.Locationofthe34indicatorsselectedintheJúcarRiverBasinDistrict.IndividualSIMayof2017. 282 T.Ortega-Gómezetal./ScienceoftheTotalEnvironment610–611(2018)276–290 Table2 Droughtintensityclassification,valuesandcolourrange,forSPIandiHI(leftside)andPDSIandiNDVI(rightside). SPI and iHI Classification Colour PDSI and iNDVI Classification Colour −4.00 and under Extremely dry −2.00 and under Extremely dry −3.99 a −3.00 Very dry −1.99 a −1.50 Very dry −2,99 a −2.00 Moderately dry −1.49 a −1.00 Moderately dry −1,99 a −1.00 Slightly dry −0.99 a −0.50 Slightly dry −0.99 a −0.50 Incipient dry −0.49 a +0.49 Near normal −0.49 a +0.49 Near normal +0.50 a +0.99 Slightly wet +0.50 a +0.99 Incipient wet +1.00 a +1.49 Unusually wet +1.00 a +1.99 Slightly wet +1.50 a +1.99 Very wet +2.00 a +2.99 Unusually wet +2.00 and above Extremely wet +3.00 a +3.99 Very wet +4.00 and above Extremely wet Fig.5.Mapsofthedroughtindicesinthedryseasonof2014. T.Ortega-Gómezetal./ScienceoftheTotalEnvironment610–611(2018)276–290 283 Waterdemandsforcropswereincreasedthatyear,duetotheminor TheoperationaldroughtindexiSIandthelong-termmeteorological precipitationinthecoastandthehighertemperature,andwaterderiva- drought,SPI-24,haveasimilarperformanceduringthisperiod(Figs.6b tionsforirrigationareincreasedaround10%inrespectofpreviousyears and7b)inbothsystems,TuriaandJúcar.Themainreasonisthatapre- (CHJ,2016).Themajorwaterresourcessystems(Mijares,Turia,Júcar) cipitationdeficitprolongedintimeistransmittedintothehydrological werenotsignificantlyaffectedbythismeteorological-edaphicdrought. cycleandfinallyimpliesareductionofwaterreservesandtheavailable However,rain-fedirrigation systems(Magroriver,MiddleJúcaror resourcesforthefinalusers.However,therearesomedeviationsinthe Vinalopósystem)wereclearlyimpactedbythedrought. Júcarsystem,thelargestsystemoftheJúcarRBD.SPI-24couldbeagood That year saw the paradox that aggregated drought indicators indextodefinetheprolongeddroughtbecauseitonlytakesintoaccount showedthattheyearwasnormalorbetterthannormal,whileinlarge precipitationdataasrequiredbytheEuropeanCommission(EC,2007) areasoftheRiverBasinDistrictsignificantimpacts duetodrought andadditionallyitreflectsthebehaviourofthewaterresourcesystems. wereoccurring(Fig.5). Inthelastnormal-drycycle,fromthebeginningof2012untilthe endof2014,manyindices-inbothsystems-showaninitialdrycondi- tion(iHIandSPI;SPI-24andiSI;andPDSI,iHI-3)thatfinallycomestobe 3.2.Timeseriesofdroughtindices inaverydrycondition(SPI-3attheendof2014andthePDSIduring 2014).WhiletheoperationaldroughtindexiSIoftheTuriasystem TemporalevolutionofthedroughtindicesforTuriaandJucarsys- alsoreflectsthissituation,theiSIoftheJúcarsystemdoesnotreflect tems(thelargestsystemsoftheJúcarRBD),includingtheclassification it.TounderstandthesedeviationsintheJúcarsystemitisnecessaryto of“verydry”and“extremelydry”conditionsaccordingtoTable2,have usethedistributedmapsofthedroughtindicators(Fig.5).Inthecase beenobtainedfromOctober1991untilDecember2014(Figs.6and7). oftheTuriasystem,themaps(SPI-24,SPI-12andPDSI)showthatthe InthecaseofiNDVI,dataseriesbeganin2002. droughtextensioncoversthemediumandlowerbasinandalsoapart Short-termmeteorologicaldrought,SPI-3,isverywellcorrelated oftheupperbasin,whichisalsoobservedintheiNDVI-3,sointhissys- withthesoilmoisture,iHI.Bothindiceshaveaverysimilarbehaviour temthereisnotasignificantdeviationbetweenindices.Howeverinthe alongthe23yearsstudiedfortheTuria(Fig.6b)andJucar(Fig.7a)sys- caseoftheJúcarsystem,themaps(Fig.5)showthatalthoughdrought tems.Sothe3-monthaccumulatedprecipitationisasimpleandavery conditionscoveralargeextensiontheydonotcoverthewholeofthe goodindicatorofthesoilmoistureconditions. riverbasin,especiallytheupperbasin.Ifitisalsotakenintoaccount Fig.6.TimeseriesofdroughtindicesfortheTuriasystem.a)RelationshipbetweensoilmoistureindexiHIandshort-termmeteorologicalindexSPI-3.b)Relationshipbetweenoperational indexiSIandlong-termmeteorologicalindexSPI-24.c)RelationshipbetweenedaphicindicesPDSIandiHI-3andvegetationindexiNDVI-6. 284 T.Ortega-Gómezetal./ScienceoftheTotalEnvironment610–611(2018)276–290 Fig.7.TimeseriesofdroughtindicesfortheJúcarsystem.a)RelationshipbetweensoilmoistureindexiHIandshort-termmeteorologicalindexSPI-3.b)Relationshipbetweenoperational indexiSIandlong-termmeteorologicalindexSPI-24.c)RelationshipbetweenedaphicindicesPDSIandiHI-3andvegetationindexiNDVI-6. thattheupperbasinistheareawhereasignificantpartofthewaterre- Forthesecases,theindicesSPI-3,iHIandiNDVIarethefirsttodetect sourcesoftheriverbasinaregenerated,thenitispossiblethatanaggre- theonsetofadryperiod(October2004,June2009,August2011),with gatedindexfortheentireriverbasinreflectsagoodsituationforthe anestimatedanticipationof5to8monthscomparedtotheSPI-12and totalresources,whileitispossiblethatthereisanintensivedrought PDSI,(October2004,August2011),andof10to18monthswhencom- inspecificandsignificantareasinsidethebasin.Thereversecanalso paredtotheSPI-24(October2004,August2011).Thesesoilorshort- happen. termmeteorologicalindiceshavedemonstratedtheiranticipationin The vegetation index iNDVI-6 has a similar performance to the droughtdetection,respectivelytootherindicesstudiedforlong-term edaphicdroughtindicatorPDSI,inbothsystemsanalysed,Júcar(Fig. meteorological(SPI-12,SPI-24),edaphic(PDSI)oroperational(iSI),so 6c)andTuria(Fig.7c).ThisbehaviourisslightlyworsewiththeiHI-3 theyimprovethedroughtriskdetection. index. MonthlyevolutionofthedifferentdroughtindicesfortheJúcarsys- 4.Discussion temispresentedthroughamatrix(Table3).Thematrixincludesfor each index, iSI, SPI-24 SPI-12 SPI-6, SPI-3, PDSI, iHI, iHI-3, iNDVI, Correlationsbetweenindices,iSI,SPI-24SPI-12SPI-6,SPI-3,PDSI, iNDVI-3andiNDVI-6,thenumericalvalueandtheclassinwhichitisin- iHI,iHI-3,iNDVI,iNDVI-3andiNDVI-6,areanalysedforthetwolarger cludedbasedonTable2.Thistableisaneasyunderstandingtoolto waterresourcessystems,TuriaandJúcar,oftheJúcarRBD,(Table4). knowthebeginningandtheendingofthedroughts,theirintensity Inbothsystems,thesamestructureaboutwhatarethebettercorrela- andscope:meteorological,edaphicoroperational. tions is produced (see bold numbers in table 4). The operational IntheJúcarsystemthereisanextremedryperiodduringthewater droughtindexiSIisbettercorrelatedwithSPI-24andthePDSIwith years1993/94–1994/95andtwoverydryperiods,oneoftwoyears SPI-12.Inthecaseofmoistureindices,iHIitismoresimilartothe 1998/99–1999/2000andanotherofthreeyears2004/05–2006/07.The short-termmeteorologicalindexSPI-3andtheniHI-6isbettercorrelat- greater manifested drought occurred in the early nineties (1994– edwithSPI-6.Forthevegetationindices,iNDVI,iNDVI-3iNDVI-6are 1995)whenallstandardisedindicesfordifferenttimeoffsetsreveal bettercorrelatedwithSPI-12andPDSI,inbothcaseswithsimilarvalues. theexistenceof“extremelydry”meteorological,edaphicandoperation- Inbothsystemstheoperationaldroughtindex,iSI,isbettercorrelat- alconditionspersistentoveraround24months.Othershorterdrype- edwiththelong-termmeteorologicalindexSPI-24,0.81fortheTuria riodsaredetectedintheyears2011/12and2013/14. systemand0.62fortheJúcarsystem.ThecorrelationintheJúcarsystem T.Ortega-Gómezetal./ScienceoftheTotalEnvironment610–611(2018)276–290 285 Table3 EvMolounttihonofiSIdroughSPI-24tindicaSPI-12torsinSPI-6theJúcSPI-3arsystePDSIm. iIH iIH-3 iNDVI iNDVI-3 iNDVI-6 AMuogn-9th7 0iSI.81 1SPI-24.00 1SPI-12.53 1SPI-6.27 1SPI-3.64 0PDSI.12 2iIH.11 2iIH-3.18 iNDVI iNDVI-3 iNDVI-6 Sep-97 0.59 1.43 1.68 2.30 1.86 1.12 2.35 2.99 Oct-93 −1.54 −1.23 −0.40 0.11 0.13 −1.29 0.66 0.35 Oct-97 0.71 1.47 1.75 1.85 1.12 0.06 −0.54 1.28 Nov-93 −1.28 −1.10 0.02 0.50 0.37 −0.83 0.88 0.77 Nov-97 1.06 1.67 1.78 1.77 0.81 0.70 0.32 0.49 Dec-93 −1.61 −1.31 −0.40 −0.22 0.00 −1.61 −0.31 0.50 Dec-97 1.38 1.66 1.90 1.89 0.78 1.63 1.18 0.48 Jan-94 −0.93 −1.35 −0.29 −0.56 −0.65 −1.71 −0.41 0.01 Jan-98 1.34 1.65 1.46 1.46 1.17 1.59 0.91 0.94 Feb-94 −1.24 −1.46 −0.91 −0.69 −1.37 −1.89 −0.76 −0.54 Feb-98 1.22 1.53 1.65 1.19 0.85 1.37 0.60 0.92 Mar-94 −0.48 −1.50 −1.27 −1.09 −1.94 −3.11 −1.18 −0.81 Mar-98 1.11 1.40 1.63 0.28 −0.22 0.44 −0.21 0.50 Apr-94 −0.77 −1.21 −0.88 −1.10 −1.07 −2.66 −0.76 −0.94 Apr-98 0.98 1.43 1.30 0.50 −0.65 0.33 0.05 0.18 May-94 −0.87 −1.37 −0.82 −1.60 −1.12 −3.32 −1.07 −1.08 May-98 0.99 1.51 1.34 0.69 0.44 1.88 1.41 0.27 Jun-94 −0.87 −1.72 −1.25 −1.90 −1.10 −3.34 −1.67 −1.19 Jun-98 1.33 1.48 1.07 0.23 0.61 1.56 0.19 0.60 Jul-94 −0.83 −1.69 −1.47 −2.07 −2.09 −2.61 −1.61 −1.55 Jul-98 0.94 1.40 0.89 0.01 0.73 1.62 −0.60 0.81 Aug-94 −0.52 −1.77 −1.46 −2.08 −2.12 −2.19 −1.06 −1.67 Aug-98 0.81 1.41 0.63 −0.06 −0.89 1.53 −0.35 −0.20 Sep-94 −0.55 −1.35 −1.23 −1.14 −0.15 −1.73 0.05 −0.99 Sep-98 0.63 1.20 0.21 0.11 −0.61 1.15 −0.49 −0.63 Oct-94 −0.83 −1.19 −1.20 −0.71 0.56 −0.91 0.58 0.25 Oct-98 1.41 1.24 0.16 −0.43 −1.54 0.08 −1.16 −1.30 Nov-94 −0.50 −1.05 −1.54 −0.32 0.47 −1.12 −0.27 0.16 Nov-98 0.89 0.97 −0.43 −2.56 −1.75 −0.59 −1.56 −1.55 Dec-94 −0.77 −1.44 −1.75 −0.65 −0.55 −2.05 −1.58 −0.63 Dec-98 0.45 0.87 −0.78 −1.92 −1.88 −0.37 −1.07 −1.60 Jan-95 −0.47 −1.54 −2.03 −0.70 −1.56 −2.39 −1.36 −1.27 Jan-99 −1.59 0.30 −1.18 −1.59 −0.60 −0.70 −1.00 −1.39 Feb-95 −0.60 −1.93 −2.01 −0.81 −2.00 −3.05 −1.59 −1.59 Feb-99 −0.31 0.42 −1.29 −1.72 −0.10 −0.76 −1.11 −1.13 Mar-95 −1.46 −2.04 −1.69 −1.48 −1.87 −3.72 −1.32 −1.50 Mar-99 0.01 0.74 −0.53 −0.88 0.22 0.08 −0.40 −0.88 Apr-95 −1.64 −2.12 −2.28 −2.52 −2.59 −4.40 −1.52 −1.53 Apr-99 −0.41 0.50 −0.60 −0.28 0.23 −0.50 −0.68 −0.76 May-95 −1.70 −2.10 −1.89 −2.58 −2.07 −4.97 −1.38 −1.49 May-99 −0.38 0.19 −1.33 −0.21 −0.07 −1.54 −1.03 −0.67 Jun-95 −1.67 −1.92 −1.37 −1.63 −0.81 −4.29 0.05 −1.35 Jun-99 −0.74 −0.04 −1.27 −0.51 −1.03 −1.50 −0.79 −0.94 Jul-95 −1.56 −1.99 −1.30 −1.48 0.10 −3.81 −0.13 −0.85 Jul-99 −0.61 −0.05 −0.99 −0.10 −0.27 −1.45 0.50 −0.81 Aug-95 0.41 −1.68 −0.69 −0.33 1.31 −3.85 1.83 0.69 Aug-99 −0.57 −0.31 −1.00 −0.11 0.22 −1.18 −0.45 −0.43 Sep-95 0.49 −1.76 −1.21 −0.67 0.18 −3.95 −0.90 0.31 Sep-99 −0.82 −0.44 −0.70 −0.35 0.71 −0.79 0.72 0.35 Oct-95 0.40 −2.23 −1.93 −0.58 −0.65 −4.62 −1.08 −0.65 Oct-99 0.18 −0.13 −0.13 0.24 0.69 −0.35 0.61 0.77 Nov-95 −1.71 −2.53 −2.06 −0.26 −1.64 −4.61 −1.17 −1.36 Nov-99 0.07 −0.47 −0.09 0.34 0.41 −0.54 0.01 0.49 Dec-95 0.31 −1.84 −0.96 0.27 0.39 −3.02 0.26 −0.80 Dec-99 −0.35 −0.86 −0.38 0.11 −0.42 −0.83 −0.42 0.03 Jan-96 1.26 −1.62 −0.39 0.71 1.29 −2.04 0.59 −0.04 Jan-00 −0.56 −1.16 −0.43 −0.31 −1.00 −0.96 −0.31 −0.28 Feb-96 1.18 −1.31 −0.08 0.34 1.44 −1.56 0.95 0.67 Feb-00 −0.35 −1.33 −0.66 −0.66 −1.42 −1.93 −1.33 −0.74 Mar-96 1.03 −1.08 0.06 0.63 0.68 −1.68 0.47 0.74 Mar-00 −0.59 −1.17 −1.07 −1.28 −1.64 −2.44 −1.06 −0.93 Apr-96 0.59 −1.24 0.21 0.69 −0.40 −2.03 −0.06 0.55 Apr-00 −0.37 −0.96 −0.69 −0.95 −0.45 −1.75 −0.34 −1.01 May-96 0.53 −0.93 0.47 0.81 −0.21 −1.61 0.17 0.26 May-00 −0.09 −1.29 −0.27 −0.49 0.31 −1.74 −0.14 −0.66 Jun-96 0.54 −0.81 0.22 0.23 −0.27 −1.59 −0.38 −0.06 Jun-00 0.10 −1.26 −0.43 −0.69 0.21 −1.83 −0.82 −0.43 Jul-96 0.68 −0.74 0.24 −0.27 0.18 −1.41 −0.19 −0.07 Jul-00 −0.31 −1.23 −0.65 −0.70 −0.41 −1.34 −1.19 −0.60 Aug-96 0.54 −0.70 −0.07 −0.42 −0.14 −1.19 −0.16 −0.30 Aug-00 −0.70 −1.33 −0.63 −0.36 −1.62 −1.04 −1.00 −1.11 Sep-96 0.72 −0.40 0.61 0.51 1.12 −0.04 1.70 0.80 Sep-00 −1.05 −1.43 −1.26 −0.96 −2.58 −1.58 −1.70 −1.79 Oct-96 0.62 −0.80 0.56 0.14 0.21 −1.05 −0.81 −0.03 Oct-00 −1.05 −0.81 −0.89 −0.33 0.15 −0.28 0.68 −0.36 Nov-96 0.59 −0.59 0.85 0.43 0.66 −0.29 0.35 0.25 Nov-00 −1.06 −0.71 −0.82 −0.51 0.26 −0.23 0.36 0.23 Dec-96 1.24 −0.13 0.77 1.17 0.70 0.96 1.63 0.60 Dec-00 −0.63 −0.70 −0.53 0.07 1.29 0.24 0.61 0.67 Jan-97 1.46 0.53 1.24 1.78 1.96 3.03 2.12 1.69 Jan-01 −0.19 −0.56 −0.24 0.43 0.62 0.65 0.55 0.59 Feb-97 1.50 0.45 0.90 1.57 1.39 1.89 0.71 1.58 Feb-01 0.17 −0.44 0.11 0.59 0.71 0.51 0.53 0.59 Mar-97 1.33 0.37 0.72 0.73 0.57 0.59 −0.58 0.86 Mar-01 0.43 −0.60 0.26 1.04 0.50 0.04 0.17 0.47 Apr-97 0.94 0.73 1.00 1.21 −0.72 0.66 −0.17 0.02 Apr-01 0.63 −0.58 −0.06 0.29 −0.10 −0.55 −0.25 0.22 May-97 0.78 0.88 0.95 1.03 0.36 1.03 0.27 −0.27 May-01 0.53 −0.38 −0.02 0.38 0.07 −0.35 −0.05 0.00 Jun-97 0.80 0.95 1.32 1.23 1.42 1.41 1.57 0.35 Jun-01 0.10 −0.48 −0.07 −0.07 −0.58 −0.65 −0.99 −0.38 Jul-97 0.99 1.02 1.39 0.61 1.41 0.59 2.19 1.14 Jul-01 −0.18 −0.60 −0.06 −0.50 −0.51 −0.32 −1.19 −0.61 Aug-01 −0.21 −0.58 0.03 −0.55 −1.24 −0.21 −0.53 −1.02