ebook img

Improvement of the drought indicators system in the Júcar River Basin, Spain PDF

2018·3.8 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Improvement of the drought indicators system in the Júcar River Basin, Spain

ScienceoftheTotalEnvironment610–611(2018)276–290 ContentslistsavailableatScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Improvement of the drought indicators system in the Júcar River Basin, Spain TatianaOrtega-Gómeza,⁎,MiguelA.Pérez-Martínb,TeodoroEstrelaa,b aConfederaciónHidrográficadelJúcar(CHJ)JúcarRiverBasinAuthority,Avd.BlascoIbáñezno48,46010,Valencia,Spain bResearchInstituteofWaterandEnvironmentalEngineering(IIAMA),UniversitatPolitècnicadeValencia,CaminodeVeras/n,46022,Valencia,Spain H I G H L I G H T S G R A P H I C A L A B S T R A C T • SPI-12orSPI-24canbeusedtodefine the “prolonged drought” required by EU. • There is a high correlation between operationaldroughtindicesandlong- termSPI. • Moisture content index is correlated withtheshort-termprecipitationindex. • Variousindicesarenecessarytodetect differenttypesofdrought. • A unique aggregated indicator could hideasignificantdroughtinaspecific area. a r t i c l e i n f o a b s t r a c t Articlehistory: Droughtsareoneofthegravestnaturalthreatscurrentlyexistingintheworldandtheiroccurrenceandintensity Received15June2017 mightbeexacerbatedinthecomingyearsduetoclimatechange.Thesevereimpactsthatdroughtscausetoin- Receivedinrevisedform27July2017 landwaterresourcesandtotheassociatedsocio-economicactivitiesjustifythecontinuousmonitoringofthe Accepted28July2017 drought.Thecasestudypresentedshowsapracticalapplicationofadistributeddroughtmonitoringsystemim- Availableonline11August2017 plementedinarealriverbasindistrict,theJúcarRiverBasinDistrict(43,000km2),wheredroughtperiodsof markedintensityhaveoccurredhistoricallyandtheclimaterangesfromhumidinthenorthtosemiaridinthe Editor:D.Barcelo south.Fivedroughtindiceshavebeenapplied:StandardisedPrecipitationIndex(SPI)formeteorological Keywords: drought;PalmerDroughtSeverityIndex(PDSI)andanewsoilmoistureindex(HI),foredaphicdrought;Normal- distributeddroughtmonitoring isedDifferenceVegetationIndex(NDVI)forthevegetationactivity;andSpanishStatusIndex(SI),fortheoper- droughtindices ationaldrought.Allindicesarestandardisedtocomparethem. remotesensing TherelationshipbetweenthestandardisedoperationaldroughtindexSIandthelong-termmeteorologicalindi- prolongeddrought ces,SPI-12orSPI-24,showthatinamediumsizebasintheconceptof“prolongeddrought”requiredbytheEu- ropeanCommission undertheWaterFrameworkDirectivecouldbedefinedbytheuseof accumulated precipitationindices.Thenumberofmonthstobeaccumulateddependsonthesizeofthebasinandthewater managementsystemproperties.Inlargebasins,suchastheJúcarriverbasin(22,000km2),therearesignificant deviationsduetothespatialdistributionofthedrought.Theuseofauniqueaggregatedindicatorcouldhidea significantdroughtinaspecificarea,orontheotherhandshowanon-realdrought.Evolutionofdroughtindices foreachwatermanagementsystemmustbeaccompaniedbyspatiallydistributeddroughtmapstobetterunder- standthedroughtstatusanditsevolution. ©2017ElsevierB.V.Allrightsreserved. ⁎ Correspondingauthor. E-mailaddress:[email protected](T.Ortega-Gómez). http://dx.doi.org/10.1016/j.scitotenv.2017.07.250 0048-9697/©2017ElsevierB.V.Allrightsreserved. T.Ortega-Gómezetal./ScienceoftheTotalEnvironment610–611(2018)276–290 277 1.Introduction circumstances are exceptional or could have not reasonably been foreseen. Droughtsareanaturalhazardfortheenvironment,theeconomy Thismanuscriptincludestheapplicationofasetofspatiallydistribut- andthesocialdevelopment.Althoughbyitselfisnotadisaster,whether eddroughtindicatorsinarealcase,theJúcarRiverBasinDistrict(RBD), itbecomesonedependsonitsimpactsonsocietyandenvironment whichisalargedistrict(43,000km2)formedbytheaggregationofseveral (WilhiteandBuchanan-Smith,2005).Droughtsarepresentallover riverbasinsandislocatedintheSpanishMediterraneanarea.TheJúcar theworldandaffectthearidandsemi-aridregionsandalsohumid RBD includes nine water resources systems with different climates, andsub-humidregions(MishraandSingh,2010).Thespatialextension, fromhumidtosemiarid,sothedroughtindiceswouldbetestedindiffer- fromlocaltoregionalscale,andthedurationintime,fromweeksto entclimateconditions.Climatechangecouldbeasignificantimpactinthe years,alsocanbeveryvariable(Andreuetal.,2015).Droughtsarea naturalresourcesofthisriverbasin(Estrelaetal.,2012)anddrought slow-onsetnatural hazard(Sivakumar et al., 2011),whichappears couldbeincreasedinnumberandintensityinthefuture(Pérez-Martín whenprecipitationisunderthenormalvaluesduringaperiodoftime. etal.,2015).Thestandardisedformoffivetypesofindicesareapplied: Theunusuallowvaluesofprecipitationcanbetransferredinafast formeteorologicaldrought,theStandardisedPrecipitationIndex(SPI; way(weeksorafewmonths)toothercomponentsofthehydrological McKeeetal.,1993);foredaphicdrought(agricultural)amodifiedPalmer cycle(soilmoisture,riverflows),oronthecontrary,inamuchslower DroughtSeverityIndex(PDSI,Palmer,1965)andanexpresslycreated one(manymonthsorevenyears)toothercomponentsofhydrological HumidityIndexinsoil(iHI);forthevegetationresponse,thestandardised cyclesuchaspiezometriclevelsorgroundwaterdischarges.Dueto NormalisedDifferenceVegetationIndex(iNDVI;Jordan,1969),andfor thesecharacteristics,theDroughtManagementPlanshavedemonstrat- theoperationaldrought,thestandardisedStatusIndex(iSI). edtobevaluablemanagementtoolstofightthistypeofanomalies TheiSIandiNDVindicesaredirectlyderivedfromobserveddataand (EstrelaandVargas,2012). reflecttherealsituationobservedintheriverbasin.Thefirstonemainly TheDroughtIndicatorSystemhasasignificantroleinthedeclara- indicatestheamountofavailablewatertosupplywaterdemands.The tionofadroughtandintheapplicationofthemeasuresdefinedinthe secondoneindicatesthevegetationactivityinamonthiNDVI,inasea- DroughtManagementPlans(EstrelaandSancho,2016).TheDrought son(threemonths)iNDVI-3orduringsixconsecutivemonthsiNDVI-6, IndicatorSystemisapowerfultooltosupportthewatermanagers derivedfromtheEOS-AquasatelliteequippedwiththeMODISsensor. andfinaluserstounderstandhowandwherethedroughthasbeenoc- Themeteorological(SPI)andedaphic(PDSIandiHI)indicesarederived curring.Thereisawiderangeofdroughtindicatorstodetermineeach fromprecipitationandtemperaturedata.Differentmonthlyaccumula- typeofdrought:meteorological,definedasalackofprecipitationover tionsforSPIareconsideredfortheshort-term(SPI,SPI-3,SPI-6)and aregionforaperiodoftime;hydrological,relatedtoaperiodwithinad- thelong-term(SPI-12andSPI-24).ThemodifiedPDSIandtheiHIare equatesurfaceandsubsurfacewaterresourcesforestablishedwater obtained by the water balance in soil calculated with the Patrical usesofagivenwaterresourcesmanagementsystem;agricultural,refers model(Pérez-Martínetal.,2014). toaperiodwithdecliningsoilmoistureandconsequentcropfailure TheremaindermanuscriptincludesinsectiontwotheDataSetand withoutanyreferencetosurfacewaterresources;andsocio-economic theindicesused.Thethirdsectiondescribesthestudycaseresults.Dis- drought,associatedwithfailureofwaterresourcessystemstomeet cussionisincludedinthefourthsectionandfinally,thefifthsectioncon- waterdemands(MishraandSingh,2010).Anextensiverevisionof tainstheconclusions. droughtindicesisincludedinMishraandSingh(2010)andPedro- Monzonísetal.(2015).Besides,remotesensingprovidesasynoptic 2.Datasetandindicesused viewoftheEarth,andisanadvantageoussourceofinformationineval- uatingthedroughtimpacts(QuiringandGanesh,2010). TheJúcarRiverBasinDistrict(JRBD)islocatedintheeasternpartof ThecurrentDroughtIndicatorSysteminSpainisformedbasicallyby theIberianPeninsulainSpainandisformedbytheaggregationofriver anoperationaldroughtindex,theStatusIndex(SI).Thisindexreflects basinsthatflowintotheMediterraneanSea.Thewholeterritoryin- theamountofavailablewaterfortheendusersineachmonth,inrela- cludes nine water resources systems (WRS or system), 1) Cenia- tionwiththeamountofavailablewaterforthatmonthhistorically.This Maestrazgo,2)Mijares-PlanadeCastellón,3)PalanciaylosValles,4) indexisusefultocharacterisethesocio-economicdrought.Theindex Turia, 5) Júcar, 6) Serpis, 7) Marina Alta, 8) Marina Baja and 9) consistsofselectedcontrolpointsdistributedthroughouttheSpanish Vinalopó-Alacantí,anditstotalareaisaround42.735km2(Fig.1).The RiverBasinDistrictswhichincludethefollowinginformation:volume JúcarRBDpresentsaMediterraneanclimate.Thetotalannualprecipita- storedinsurfacereservoirs;groundwaterinaquifers;riverflowdis- tionisaround500mm,oscillatingbetweenmaximumannualvaluesof charges; reservoir inflows and precipitations in those areas where 780mmforthewetyearsandjustover300mmforthedryyears.Pre- theyaresignificantinrelationtothewaterresourcesavailabilitytosup- cipitationintheautumnisalmosthalfoftheannualprecipitationinthe plythemainwaterdemands(EstrelaandVargas,2012).Thisindexisan coastalarea.Thesecondhighestvalueoccursduringthespringand, aggregatedindexforsocio-economicdroughtineachwaterresources duringthesummer,rainisalmostnon-existent.Thesamevariability system,whichshouldbecomplementedwithasetofotherindicators canbeobservedinregardstospatialdistribution.Thereareareassuch thatshowtherestofdroughttypesandtheirspatialvariability. asMarinaAltawithaverageannualvaluesaround730mm,andmaxi- Recently,in2016,theRoyalDecreebywhichSpanishriverbasin mumvaluesof1.325mm,whereasotherareaslikeVinalopó-Alacantí managementplanswereapprovedestablishedthatindicatorsystems receivemuchlessrainfall,withaverageannualvaluesof345mmand ofRiverBasinAuthoritiesshouldbeabletoseparatelydiagnosesitua- minimumvaluesof190mm.Approximately80%ofthetotalwaterre- tionsofdroughtandwaterscarcity.TheEuropeanWaterFrameworkDi- ceived in the form of precipitation is returned to the atmosphere rectivedeterminesthattemporarydeteriorationinthestatusofwater throughevaporation,whiletheremaining20%isgroundwaterandsur- bodiesshallnotbeinbreachoftherequirementsofthisDirectiveif facerunoff(Pérez-Martínetal.,2014).Theannualvalueofpotential thisistheresultofcircumstancesofnaturalcauseorforcemajeure evapotranspirationfortheperiod1940/41–2010/11is890mm/year, whichareexceptionalorcouldnotreasonablyhavebeenforeseen,in actual evapotranspiration is around 409 mm/year, infiltration is particularextremefloodsandprolongeddroughts,ortheresultofcir- 64mm/year,surfacerunoffis31mm/yearandtotalrunoffisabout cumstancesduetoaccidentswhichcouldnotreasonablyhavebeen 95mm/year(Pérez-Martínetal.,2014). foreseen.TheEuropeanCommission(EC,2007)indicatesthattheiden- TheJúcarRBDhasapopulationofaround5millionpeople(11%of tificationofsituationsofprolongeddroughtshouldbeperformedusing the Spanish population) and has an irrigated surface of about naturalindicatorsbasedonprecipitationasthemainunderlyingparam- 389.000hamainlyconcentratedinthelowerMijares,Palancia,Turia etertoindicatethatitisa‘naturalcauseorforcemajeure’,andthatthe andJúcarbasins,theregionofManchaOriental,andtheirrigatedvalleys 278 T.Ortega-Gómezetal./ScienceoftheTotalEnvironment610–611(2018)276–290 Fig.1.LocationoftheJucarRiverBasinDistrictandtheninewaterresourcessystems:1)Cenia-Maestrazgo,2)Mijares-PlanadeCastellón,3)PalanciaylosValles,4)Turia,5)Júcar,6) Serpis,7)MarinaAlta,8)MarinaBajaand9)Vinalopó-Alacantí. oftheVinalopóandMonegrerivers.Thisterritoryhashistoricallybeen VegetationIndex(NDVI).Themeteorologicaldatainrealtimecome markedbyperiodsofintensivedroughtsthathavecompromisedthe fromtheJúcarAutomaticHydrologicalInformationSystem(SAIHin management of water resources in the Júcar RBD. The Júcar River Spanish;Estrela,etal.,2007).TheSAIHincludes181raingaugesand BasinAuthorityguaranteesthesupplyoflargepopulationslikethe 24thermometers(Fig.2)with5-minutesdatafrom1991to2015and cityofValencia,AlbaceteandTeruel,andisresponsibleforthewater othertemporalaggregations,suchasdailyormonthlytimestep.The supplyofirrigatedareas,andotherrecreational,industrialandenergy sparsedensityofavailablethermometersatthestartoftheseriesjusti- wateruses,aswellasforthecompliancewiththeenvironmentalre- fiedtheuseofothersourcesofdailytemperature,sotheSAIHtemper- quirements.Inordertosatisfythesedemands,theDistrictcountson ature series has been completed with data from the Spanish 27majorreservoirsandatotalwaterstoragecapacityof3,300hm3. MeteorologicalStateAgency(AemetinSpanish). Alarcón, Contreras and Tous are the biggest reservoirs in the river MonthlymeteorologicaldatacomingfromSAIH,precipitationand JúcarandBenagéberintheTuria(Fig.1).Afurtherdescriptionisinclud- temperature,werepreviouslyvalidated.Thevalidationprocessincludes edinFerreretal.(2012). twoprocesses:thefirstprocessistheautomaticidentificationofpossi- Thebasicgeographicalunitusedinthisstudyisthewaterresources bleoutliersbasedontheapplicationoftwooutliers'detectionmethods: system(WRSorsystem).Thisallowsdiscretisingthespatialareaof aseasonal-trenddecompositionprocedurebasedonLOESS(Cleveland droughtinsmallerterritorialunitswithacharacteristichydro-meteoro- etal.,1990)andaLOFmethod(Breuningetal.,2000).Thesecondpro- logicalbehaviourwithintheglobalscopeoftheDistrict.Inaccordance cessisadetailedanalysisoftimeseries,dailyand5-minutestimestep, withtheSpanishHydrologicalPlanningRegulation,awaterresources ofthepossiblemonthlyoutliersdetected. systemisformedbysurfacewaterbodies,groundwaterbodies,hydrau- Itwasfoundthatsomeoftheobservationsshowapatternofunusual licinfrastructureworksandwateroperationrulesthatallowestablish- behaviour.Inthoseraingaugeslocationswhereextremevalueswere ingthewatersupplybasedontheavailableresourcesandincompliance recorded,intensitycurveswerereviewedandthereturnperiodfor withenvironmentalobjectives. eachrecordwascalculated(CEDEX,1999)and,whereappropriate, someanomalieswerecorrectedincollaborationwithtechniciansfrom 2.1.Dataset theSAIHoftheJúcarRBA. TheNormalisedDifferenceVegetationIndex,NDVI,comesfromthe Indicesarecalculatedfrommonthlymeteorologicaldata,precipita- product MYD13Q1 from the EOS-Aqua satellite which is equipped tionandtemperature,andsatellitedata,15daysNormalisedDifference withtheMODIS(ModerateResolutionImagingSprectroradiometer) T.Ortega-Gómezetal./ScienceoftheTotalEnvironment610–611(2018)276–290 279 Fig.2.PrecipitationandtemperatureSAIHnetwork. sensor.Thesatellitedataseriescoverstheperiod2002–2015.TheNDVI 2.2.Indicesused valueswereextractedwhenthesatellitesweepsthesurfaceoftheJúcar RBDaround13h30UTC,whenvegetationismorestressed.Thesensor Fivedroughtindicesareanalysedinthemanuscript(Table1):the hasaviewingswathwidthof2330kmthatcoverstheentiresurface StandardisedPrecipitationIndex(SPI;McKeeetal.,1993),amodified oftheEartheveryday.Theimagesaresuppliedin.hdfformat,designed PalmerDroughtSeverityIndex(PDSI,Palmer,1965),thestandardised tostorelargeamountsofdigitaldataandaregeographicallyreferenced NormalisedDifferenceVegetation Index (iNDVI; Jordan,1969), the toasphericalcoordinatessystem.Thetemporalresolutionistherefore standardisedStatusIndex(iSI)derivedfromtheSpanishStatusIndex 16daysandthespatialis250m2. (SI)andtheexpresslycreatedHumidityIndexinsoil.Adetailedreview ThedownloadingoftheimagescoveringtheterritoryoftheJúcar of the indices is included in Mishra and Singh (2010) and Pedro- RBDwasautomated.SinceJuly2002ithasprovidedoneortwoimages Monzonísetal.(2015). permonth.Eachimageisformedbytheunionoffourscenes:h17v04 ThefirsttwoindicesareintegratedintheGIS-basedmonthlywater (Scene1),h17v05(Scene2),h18v04(Scene3)andh18v05(Scene4). balancemodelPatrical,whichisahydrologicalandwaterqualitydis- Next,thetwomonthlyimages(eightscenes)coveringthescopeof tributedsimulationmodel(Pérez-Martínetal.,2014;Pérez-Martínet theJúcarRBDwereunifiedinasinglerasterimageaveragingNDVI al.,2016).Themodelisusedforthewaterresourcesassessmentofthe valuesineachpixeloverlap. riverbasin,includinglong-termresources,spatialvariability,inter- TheNDVIsatelliteimagesprovidedirectvalueofthisvariableorigi- andintra-annualvariability,climatechangeimpactandfortheanalysis nallyformulatedinaccordancewiththefollowingrelationshipbetween ofthetemporalevolutionofprocesseswithhigherinertia,suchasni- thereflectancedetectedbythesensorinthespectralbandsofredand tratepollutioningroundwaterbodies.Themodelhasaresolutionof near-infrared(Eq.(1)): 1000×1000mandhasbeenappliedthroughoutSpain;itsresultsare usedbydifferentSpanishRiverBasinAuthorities.ThePatricalmodel ρNIR−ρred hasdevelopedanextensionforthecreationoffullydistributedmaps NDVI¼ ð1Þ ρNIRþρred (1km×1km)ofSPI,PDSIandiHI,whichcanalsobeprocessedwith theArc-GISprogrammeuntilthedesireddisplayisobtained. where:ρNIRisthereflectancedetectedinthespectralbandofnear-in- MonthlymapsofStandardisedPrecipitationIndexfordifferentaccu- fraredandρredisthereflectancedetectedinthespectralbandofred. mulationperiods(SPI-1,SPI-3,SPI-6,SPI-12ySPI-24)arecalculated Table1 Droughtindicesanddataemployed. StandardisedIndex Typeofdrought Datasource Process monitoring SPI(McKeeetal.,1993)Shorttime:SPI,SPI-3,SPI-6Long Meteorological SAIHPrecipitationstations Areal time:SPI-12,SPI-24 precipitation PDSI(Palmer,1965) Edaphic SAIHPrecipitationandTemperaturestationsfromandNational Waterbalance MeteorologicalAgency(Aemet) insoil iHI(Ortega,2015)iHI,IHI-3 Edaphic SoilmoistureobtainedbyPatricalWaterBalanceModel. Waterbalance insoil iNDVI(derivedfromNDVI,Jordan,1969)iNDVI,iNDVI-3, Edaphic Greennessofvegetation(NDVI)recordedbysatelliteimages.MODIS Standardised iNDVI6 sensor index iSI(Ortega,2015)(derivedfromdeSI) Operational ReservoirStoragesfromSAIHPiezometriclevels.Groundwater Standardised monitoringnetwork index 3-monthStream-flowsfromSAIH 12-monthPrecipitationfromSAIH 280 T.Ortega-Gómezetal./ScienceoftheTotalEnvironment610–611(2018)276–290 basedonnormalised(log-normaldistributionfunction)accumulated explained above is applied to obtain the spatial distributed iHI-3, precipitation(1,3,6,12and24months).Shortaccumulationperiods iNDVI-3andiNDVI-6indices. determinewhenthemeteorologicaldroughtstartsanditsdistribution TheStandardisedStatusIndex(iSI)wascalculatedbythemonthly overtheterritory.Long-accumulationperiods,SPI-12orSPI-24,reflects standardisation(Eq.(2))oftheSpanishStatusIndex(SI).TheStatus thepatternofbehaviourofthelong-termrainfall,andcouldalsoserve Index(SI)isappliedinalltheSpanishRiverBasinsandismonthlyup- inthedefinitionoftheconceptof“prolongeddrought”(EC,2007)in dated(Fig.3)intheNationalDroughtIndicatorSystem(MMA,2007). theJúcarRBD.Also,theSpanishMeteorologicalStateAgencycarries Thissystemallowsmakingtheformaldeclarationofadroughtinthe outthemonthlyfollow-upofmeteorologicaldroughtandpublishes SpanishRiverbasinorganisations.Thisstatementimpliestheentry theSPIindexmapsforthenationalscope(www.aemet.es). into force of the drought management plans called “Special action MonthlymapsofthemodifiedPalmerDroughtSeverityIndex,PDSI, plansinsituationsofalertandtemporarydrought”,wherethewaterre- areobtainedfromthewaterbalanceinsoiloriginatedbythePatrical sourcessystems'exploitationrulesandmeasurestobeappliedare model,whichisthebestcalibratedandvalidatedmodelfortheJúcar establishedinregardtotheuseofwaterduringthedifferentphasesof RBD (Pérez-Martín et al., 2014). The water balance proposed by adrought. Palmer(1965)thatisdevelopedpreviouslyinordertocalculatethe Thisindicatorssystemisformedbyadistributednetworkofcontrol PDSI is replaced by the more accurate water balance for this river pointsandcollectsinformationaboutreservoirstorages,groundwater basincalculatedbythePatricalmodel.PDSIinputdataarethemonthly piezometric levels, stream flows, and precipitation (MMA, 2007; precipitationandtemperaturedata. EstrelaandSancho,2016).EachSpanishriverbasinorganisationhas Droughtindicesthatincludeprecipitationandtemperaturearecur- chosenfortheSIdefinition,theindicators(variables)thatbestdescribe rentlyrequiredduetothechangesobservedandpredictedbyclimate thewaterresourcessystems'behaviourineachterritory(Estrelaand changeintemperature.ThePDSIhasbeenusedintheJúcarRBDtode- Vargas,2012),ensuringageneralhomogeneityatthenationalscale. terminetheeffectofclimatechangeinthedurationandintensityofthe TheStatusIndexiscalculatedbythefollowingexpressions(Eq.(3)): currentdroughts(Pérez-Martínetal.,2015)andalsotheStandardised (cid:1) (cid:3) PrecipitationEvaporationIndex(SPEI;Vicente-Serranoetal.,2010), 1 Vi;t−Vmed;t Vi;t≥Vmed;t→SIi;t¼ 1þ whiAchnieswamdrooduigfihctatiinodneoxfbthaeseSdPIotnhatthienvclaurdiaebslteemsopilemratouisretu.reispro- Vi;tbVmed;t→SIi;t¼ 2 Vi;t−VVmmaxi;nt;−tVmed;t ð3Þ posed,theStandardisedHumidityIndex(iHI).TheiHIhasasinput 2ðVmed;t−V min;tÞ data monthly precipitation and temperature. The index, for one monthiHIandforthree-averagemonthsiHI-3,iscalculatedfromthe where:V istheStatusindexfortheyeariandmontht;V istheindi- i,t i,t soilmoistureobtainedbythePatricalmodel.Theaimofthisindexis catorvaluefortheyeariandmontht,V V andV arethe med,t, max,t min,t toknow,inaneasytounderstandanddirectway,therelativeamount monthly(t=1to12)statistics(mean,maximumandminimum)of ofwaterinthesoil,whichcouldbeusedbythevegetationinamonth theindicatorvaluesinthereferenceperiod. orin aseason(threemonths) andexploreitrelationship withthe TheintegratedvaluesofSIforthedifferentRiverBasinsorfortheen- otherindices.TheiHI-3reflectstheseasonalbehaviourofsoilmoisture, tireRiverBasinDistrictareobtainedastheweightedsumoftheindivid- whichisassociatedwithmedium-termprecipitation,andthereforeit ualindexesrepresentingtheavailablewaterresources.Theweightof shouldbelinkedwiththebehaviourofPDSIandiNDVI. eachindividualindexisbasedmainlyontheamountofwaterdemand Themonthlystandardisation(Salasetal.,1980)isdevelopedfor thatwaterresourcesrepresentedbytheindexissupplyingandthe monthlysoilmoistureorthree-averagesoilmoisture(Eq.(2)). levelofguaranteerequiredbyeachwaterdemandunit.Theintegrated indexallowsclassifyingtheriverbasinsinfourtypesofhydrologicsta- Xv;t‐μt tuses(normality,pre-alert,alertandemergency)thatassesstherestric- Yv;t¼ ð2Þ σt tionrisksinthevariouswaterdemandunitsofthesystems. The SI has therefore an advantage over the meteorological and where:Y istheresultingstandardisedvariablefortheyearvand edaphicindicesinthedroughtmanagementofawaterresourcessys- v,t month t;X is theoriginal variable; μ andσ are respectively the tem,becauseitislinkedtothedemandstobemetandthewaterre- v,t t t monthlyt(1to12)meanandstandarddeviationoftheoriginalvariable sources that are used to meet them. In addition, the weighting forthereferenceperiod. coefficientsandthethresholdsdefiningthetypesofhydrologicalstatus Maps of Standardised Normalised Difference Vegetation Index, havebeenestimatedtakingintoaccountactualwaterresourcessys- iNDVI,areobtained by applyingthestandardisation procedurede- tems'deficits. scribedabove(Eq.(2))totheNDVIvariable(greennessofvegetation) IntheJúcarRBD,theSIsummarisesdroughtsituationsbymeansof directlyextractedfromthesatelliteimages.TheJúcarRBDirrigated 34indicatorslinkedtowaterresourcesavailabilitytosatisfywaterde- areasmightaffecttheinterpretationintheevolutionoftheNDVIvari- mands(Fig.4a).Arealprecipitationgaugingstations,aquiferwater able.Theseareasinvolveanalterationofthenaturalhydrologicalcycle levelmonitoringnetwork,stream-flowsandreservoirinflowsrecorded regimeduetotheartificialsupplyofwaterforirrigation,whichaffects bygaugingstationsandreservoirstoragesobtainedfromSAIH.Those thevegetatedlandarea.Theproceduredevelopedforcalculatingthe indicatorsareallweightedatthewaterresourcessystemscale,depend- zonal(waterresourcessystem)monthlyNDVIvaluesincludetwover- ingonthedemandstheymeet,uptoalimitlowerthan10hm3/year. sions,withandwithouttheirrigationlandexistingintheJúcarRBD. TheresultsoftheirmonthlyapplicationintheJúcarRBDarepublished Thus,thezonaliNDVIhasasecondversionwithouttheirrigationland inthedroughtindicatorsfollow-upreportoftheJúcarRiverBasinAu- (iNDVI ).MonthlystatisticvaluesoftheNDVIvariable(range,average, thority(Fig.4b),whichisaccessiblethroughthewebpageofJúcar w minimum,maximumandstandarddeviation)werethencalculatedper RiverBasinAuthority(www.chj.es). waterresourcessystem. TheiHI-3,iNDVI-3andiNDVI-6indicesrequirethreemonthsaccu- 3.Results mulatedvalues,soitisnecessarytouseaPythonscriptcreatedfor this purpose to automate the task in ArcGIS. Basically, the script ThestudycaseshowsapracticalapplicationofaDroughtMonitoring consistedofamovingwindowof3itemswhichrunstheentireseries Systemimplementedinarealriverbasindistrict,theJúcarRiverBasin oftheinputrastermaps(soilmoistureandNDVI),creatinganewout- District.DroughtindicesdefinedinTable1areappliedtotheentire putrasterthatincludesthethree-monthaccumulatedoriginalvariable. riverbasin.Droughtshavethree-dimensionalcomponents,spatialdis- Oncetheaccumulatedvariableiscreated,thestandardisationprocess tribution(twodimensional)andtemporalevolution(thirddimension). T.Ortega-Gómezetal./ScienceoftheTotalEnvironment610–611(2018)276–290 281 Fig.3.NationaldroughtindicatorsystemAprilandMay2017(Source:www.mapama.es)andStatusindexdefinitionandriskclassification(MMA,2007). Twoanalysesaredeveloped:MappingDroughtIndicesalongtimeand meteorologicalconditionsoftheJúcarRiverBasinDistrict(Table2).In aggregated TimeSeries DroughtIndices for adetermined area,the thecaseofSPI,iHIandiHI-3indicestheoriginalvaluerangewasmod- waterresourcessystem. ifiedfromseventoninelevelsandthenormaltypewasdividedinto Mappingdroughtindicesallowsknowingthespatialdistribution threecategories.InthecaseofPDSIandiNDVI-3indicesaclassification andthespatialdroughtevolution,andcanhelptobetterunderstand isdividedintoelevenlevels,whichseparatesthenormaltypeintofive thedroughtevolutionanditsconsequencesalongtime. categories. TimeSeriesofDroughtIndicesforaspecificarea,suchasthewater Recently,ameteorologicalandedaphicdroughtoccurredinthemid- resourcessystem,areusefultoexplorethedependencyandrelation- dleandlowerbasinsoftheJúcarRBDduringtheyear2014(theanom- shipsbetweendifferentindices.Fromtheseresultstherelationships alyendedinDecemberof2014).Themainsystemsaffectedfromnorth thatmaybeconsideredstatisticallysignificant,havebeenestablished. tosouthwere:middleandlowerMijares,TuriaandJúcarandtheentire Vinalopó system. Howevertheupperriverbasinsof thesesystems 3.1.MappingGIS-basedindices (Mijares,TuriaandJúcar)wereunderwetconditions,sothewatergen- erationintheseareaswasnormalorabovenormalinthatyear. Differentcolourclassificationsareadoptedtobettercomparethe Thespatialdistributionofthedroughthasdeterminantimplications drought indicators. A more detailed classification to the usually onwatermanagement.Duringthatyear,2014,thewaterresourcesgen- employedbytheUniversityofNebraska-Lincolnisadoptedtorepresent erationintheupperriverbasinswasnotaffected.Theseareasprovide themapsinordertoadaptthemappingresultstotheregionalhydro- thenaturalinflowstothemajorreservoirsoftheRiverBasinDistrict. Fig.4.Locationofthe34indicatorsselectedintheJúcarRiverBasinDistrict.IndividualSIMayof2017. 282 T.Ortega-Gómezetal./ScienceoftheTotalEnvironment610–611(2018)276–290 Table2 Droughtintensityclassification,valuesandcolourrange,forSPIandiHI(leftside)andPDSIandiNDVI(rightside). SPI and iHI Classification Colour PDSI and iNDVI Classification Colour −4.00 and under Extremely dry −2.00 and under Extremely dry −3.99 a −3.00 Very dry −1.99 a −1.50 Very dry −2,99 a −2.00 Moderately dry −1.49 a −1.00 Moderately dry −1,99 a −1.00 Slightly dry −0.99 a −0.50 Slightly dry −0.99 a −0.50 Incipient dry −0.49 a +0.49 Near normal −0.49 a +0.49 Near normal +0.50 a +0.99 Slightly wet +0.50 a +0.99 Incipient wet +1.00 a +1.49 Unusually wet +1.00 a +1.99 Slightly wet +1.50 a +1.99 Very wet +2.00 a +2.99 Unusually wet +2.00 and above Extremely wet +3.00 a +3.99 Very wet +4.00 and above Extremely wet Fig.5.Mapsofthedroughtindicesinthedryseasonof2014. T.Ortega-Gómezetal./ScienceoftheTotalEnvironment610–611(2018)276–290 283 Waterdemandsforcropswereincreasedthatyear,duetotheminor TheoperationaldroughtindexiSIandthelong-termmeteorological precipitationinthecoastandthehighertemperature,andwaterderiva- drought,SPI-24,haveasimilarperformanceduringthisperiod(Figs.6b tionsforirrigationareincreasedaround10%inrespectofpreviousyears and7b)inbothsystems,TuriaandJúcar.Themainreasonisthatapre- (CHJ,2016).Themajorwaterresourcessystems(Mijares,Turia,Júcar) cipitationdeficitprolongedintimeistransmittedintothehydrological werenotsignificantlyaffectedbythismeteorological-edaphicdrought. cycleandfinallyimpliesareductionofwaterreservesandtheavailable However,rain-fedirrigation systems(Magroriver,MiddleJúcaror resourcesforthefinalusers.However,therearesomedeviationsinthe Vinalopósystem)wereclearlyimpactedbythedrought. Júcarsystem,thelargestsystemoftheJúcarRBD.SPI-24couldbeagood That year saw the paradox that aggregated drought indicators indextodefinetheprolongeddroughtbecauseitonlytakesintoaccount showedthattheyearwasnormalorbetterthannormal,whileinlarge precipitationdataasrequiredbytheEuropeanCommission(EC,2007) areasoftheRiverBasinDistrictsignificantimpacts duetodrought andadditionallyitreflectsthebehaviourofthewaterresourcesystems. wereoccurring(Fig.5). Inthelastnormal-drycycle,fromthebeginningof2012untilthe endof2014,manyindices-inbothsystems-showaninitialdrycondi- tion(iHIandSPI;SPI-24andiSI;andPDSI,iHI-3)thatfinallycomestobe 3.2.Timeseriesofdroughtindices inaverydrycondition(SPI-3attheendof2014andthePDSIduring 2014).WhiletheoperationaldroughtindexiSIoftheTuriasystem TemporalevolutionofthedroughtindicesforTuriaandJucarsys- alsoreflectsthissituation,theiSIoftheJúcarsystemdoesnotreflect tems(thelargestsystemsoftheJúcarRBD),includingtheclassification it.TounderstandthesedeviationsintheJúcarsystemitisnecessaryto of“verydry”and“extremelydry”conditionsaccordingtoTable2,have usethedistributedmapsofthedroughtindicators(Fig.5).Inthecase beenobtainedfromOctober1991untilDecember2014(Figs.6and7). oftheTuriasystem,themaps(SPI-24,SPI-12andPDSI)showthatthe InthecaseofiNDVI,dataseriesbeganin2002. droughtextensioncoversthemediumandlowerbasinandalsoapart Short-termmeteorologicaldrought,SPI-3,isverywellcorrelated oftheupperbasin,whichisalsoobservedintheiNDVI-3,sointhissys- withthesoilmoisture,iHI.Bothindiceshaveaverysimilarbehaviour temthereisnotasignificantdeviationbetweenindices.Howeverinthe alongthe23yearsstudiedfortheTuria(Fig.6b)andJucar(Fig.7a)sys- caseoftheJúcarsystem,themaps(Fig.5)showthatalthoughdrought tems.Sothe3-monthaccumulatedprecipitationisasimpleandavery conditionscoveralargeextensiontheydonotcoverthewholeofthe goodindicatorofthesoilmoistureconditions. riverbasin,especiallytheupperbasin.Ifitisalsotakenintoaccount Fig.6.TimeseriesofdroughtindicesfortheTuriasystem.a)RelationshipbetweensoilmoistureindexiHIandshort-termmeteorologicalindexSPI-3.b)Relationshipbetweenoperational indexiSIandlong-termmeteorologicalindexSPI-24.c)RelationshipbetweenedaphicindicesPDSIandiHI-3andvegetationindexiNDVI-6. 284 T.Ortega-Gómezetal./ScienceoftheTotalEnvironment610–611(2018)276–290 Fig.7.TimeseriesofdroughtindicesfortheJúcarsystem.a)RelationshipbetweensoilmoistureindexiHIandshort-termmeteorologicalindexSPI-3.b)Relationshipbetweenoperational indexiSIandlong-termmeteorologicalindexSPI-24.c)RelationshipbetweenedaphicindicesPDSIandiHI-3andvegetationindexiNDVI-6. thattheupperbasinistheareawhereasignificantpartofthewaterre- Forthesecases,theindicesSPI-3,iHIandiNDVIarethefirsttodetect sourcesoftheriverbasinaregenerated,thenitispossiblethatanaggre- theonsetofadryperiod(October2004,June2009,August2011),with gatedindexfortheentireriverbasinreflectsagoodsituationforthe anestimatedanticipationof5to8monthscomparedtotheSPI-12and totalresources,whileitispossiblethatthereisanintensivedrought PDSI,(October2004,August2011),andof10to18monthswhencom- inspecificandsignificantareasinsidethebasin.Thereversecanalso paredtotheSPI-24(October2004,August2011).Thesesoilorshort- happen. termmeteorologicalindiceshavedemonstratedtheiranticipationin The vegetation index iNDVI-6 has a similar performance to the droughtdetection,respectivelytootherindicesstudiedforlong-term edaphicdroughtindicatorPDSI,inbothsystemsanalysed,Júcar(Fig. meteorological(SPI-12,SPI-24),edaphic(PDSI)oroperational(iSI),so 6c)andTuria(Fig.7c).ThisbehaviourisslightlyworsewiththeiHI-3 theyimprovethedroughtriskdetection. index. MonthlyevolutionofthedifferentdroughtindicesfortheJúcarsys- 4.Discussion temispresentedthroughamatrix(Table3).Thematrixincludesfor each index, iSI, SPI-24 SPI-12 SPI-6, SPI-3, PDSI, iHI, iHI-3, iNDVI, Correlationsbetweenindices,iSI,SPI-24SPI-12SPI-6,SPI-3,PDSI, iNDVI-3andiNDVI-6,thenumericalvalueandtheclassinwhichitisin- iHI,iHI-3,iNDVI,iNDVI-3andiNDVI-6,areanalysedforthetwolarger cludedbasedonTable2.Thistableisaneasyunderstandingtoolto waterresourcessystems,TuriaandJúcar,oftheJúcarRBD,(Table4). knowthebeginningandtheendingofthedroughts,theirintensity Inbothsystems,thesamestructureaboutwhatarethebettercorrela- andscope:meteorological,edaphicoroperational. tions is produced (see bold numbers in table 4). The operational IntheJúcarsystemthereisanextremedryperiodduringthewater droughtindexiSIisbettercorrelatedwithSPI-24andthePDSIwith years1993/94–1994/95andtwoverydryperiods,oneoftwoyears SPI-12.Inthecaseofmoistureindices,iHIitismoresimilartothe 1998/99–1999/2000andanotherofthreeyears2004/05–2006/07.The short-termmeteorologicalindexSPI-3andtheniHI-6isbettercorrelat- greater manifested drought occurred in the early nineties (1994– edwithSPI-6.Forthevegetationindices,iNDVI,iNDVI-3iNDVI-6are 1995)whenallstandardisedindicesfordifferenttimeoffsetsreveal bettercorrelatedwithSPI-12andPDSI,inbothcaseswithsimilarvalues. theexistenceof“extremelydry”meteorological,edaphicandoperation- Inbothsystemstheoperationaldroughtindex,iSI,isbettercorrelat- alconditionspersistentoveraround24months.Othershorterdrype- edwiththelong-termmeteorologicalindexSPI-24,0.81fortheTuria riodsaredetectedintheyears2011/12and2013/14. systemand0.62fortheJúcarsystem.ThecorrelationintheJúcarsystem T.Ortega-Gómezetal./ScienceoftheTotalEnvironment610–611(2018)276–290 285 Table3 EvMolounttihonofiSIdroughSPI-24tindicaSPI-12torsinSPI-6theJúcSPI-3arsystePDSIm. iIH iIH-3 iNDVI iNDVI-3 iNDVI-6 AMuogn-9th7 0iSI.81 1SPI-24.00 1SPI-12.53 1SPI-6.27 1SPI-3.64 0PDSI.12 2iIH.11 2iIH-3.18 iNDVI iNDVI-3 iNDVI-6 Sep-97 0.59 1.43 1.68 2.30 1.86 1.12 2.35 2.99 Oct-93 −1.54 −1.23 −0.40 0.11 0.13 −1.29 0.66 0.35 Oct-97 0.71 1.47 1.75 1.85 1.12 0.06 −0.54 1.28 Nov-93 −1.28 −1.10 0.02 0.50 0.37 −0.83 0.88 0.77 Nov-97 1.06 1.67 1.78 1.77 0.81 0.70 0.32 0.49 Dec-93 −1.61 −1.31 −0.40 −0.22 0.00 −1.61 −0.31 0.50 Dec-97 1.38 1.66 1.90 1.89 0.78 1.63 1.18 0.48 Jan-94 −0.93 −1.35 −0.29 −0.56 −0.65 −1.71 −0.41 0.01 Jan-98 1.34 1.65 1.46 1.46 1.17 1.59 0.91 0.94 Feb-94 −1.24 −1.46 −0.91 −0.69 −1.37 −1.89 −0.76 −0.54 Feb-98 1.22 1.53 1.65 1.19 0.85 1.37 0.60 0.92 Mar-94 −0.48 −1.50 −1.27 −1.09 −1.94 −3.11 −1.18 −0.81 Mar-98 1.11 1.40 1.63 0.28 −0.22 0.44 −0.21 0.50 Apr-94 −0.77 −1.21 −0.88 −1.10 −1.07 −2.66 −0.76 −0.94 Apr-98 0.98 1.43 1.30 0.50 −0.65 0.33 0.05 0.18 May-94 −0.87 −1.37 −0.82 −1.60 −1.12 −3.32 −1.07 −1.08 May-98 0.99 1.51 1.34 0.69 0.44 1.88 1.41 0.27 Jun-94 −0.87 −1.72 −1.25 −1.90 −1.10 −3.34 −1.67 −1.19 Jun-98 1.33 1.48 1.07 0.23 0.61 1.56 0.19 0.60 Jul-94 −0.83 −1.69 −1.47 −2.07 −2.09 −2.61 −1.61 −1.55 Jul-98 0.94 1.40 0.89 0.01 0.73 1.62 −0.60 0.81 Aug-94 −0.52 −1.77 −1.46 −2.08 −2.12 −2.19 −1.06 −1.67 Aug-98 0.81 1.41 0.63 −0.06 −0.89 1.53 −0.35 −0.20 Sep-94 −0.55 −1.35 −1.23 −1.14 −0.15 −1.73 0.05 −0.99 Sep-98 0.63 1.20 0.21 0.11 −0.61 1.15 −0.49 −0.63 Oct-94 −0.83 −1.19 −1.20 −0.71 0.56 −0.91 0.58 0.25 Oct-98 1.41 1.24 0.16 −0.43 −1.54 0.08 −1.16 −1.30 Nov-94 −0.50 −1.05 −1.54 −0.32 0.47 −1.12 −0.27 0.16 Nov-98 0.89 0.97 −0.43 −2.56 −1.75 −0.59 −1.56 −1.55 Dec-94 −0.77 −1.44 −1.75 −0.65 −0.55 −2.05 −1.58 −0.63 Dec-98 0.45 0.87 −0.78 −1.92 −1.88 −0.37 −1.07 −1.60 Jan-95 −0.47 −1.54 −2.03 −0.70 −1.56 −2.39 −1.36 −1.27 Jan-99 −1.59 0.30 −1.18 −1.59 −0.60 −0.70 −1.00 −1.39 Feb-95 −0.60 −1.93 −2.01 −0.81 −2.00 −3.05 −1.59 −1.59 Feb-99 −0.31 0.42 −1.29 −1.72 −0.10 −0.76 −1.11 −1.13 Mar-95 −1.46 −2.04 −1.69 −1.48 −1.87 −3.72 −1.32 −1.50 Mar-99 0.01 0.74 −0.53 −0.88 0.22 0.08 −0.40 −0.88 Apr-95 −1.64 −2.12 −2.28 −2.52 −2.59 −4.40 −1.52 −1.53 Apr-99 −0.41 0.50 −0.60 −0.28 0.23 −0.50 −0.68 −0.76 May-95 −1.70 −2.10 −1.89 −2.58 −2.07 −4.97 −1.38 −1.49 May-99 −0.38 0.19 −1.33 −0.21 −0.07 −1.54 −1.03 −0.67 Jun-95 −1.67 −1.92 −1.37 −1.63 −0.81 −4.29 0.05 −1.35 Jun-99 −0.74 −0.04 −1.27 −0.51 −1.03 −1.50 −0.79 −0.94 Jul-95 −1.56 −1.99 −1.30 −1.48 0.10 −3.81 −0.13 −0.85 Jul-99 −0.61 −0.05 −0.99 −0.10 −0.27 −1.45 0.50 −0.81 Aug-95 0.41 −1.68 −0.69 −0.33 1.31 −3.85 1.83 0.69 Aug-99 −0.57 −0.31 −1.00 −0.11 0.22 −1.18 −0.45 −0.43 Sep-95 0.49 −1.76 −1.21 −0.67 0.18 −3.95 −0.90 0.31 Sep-99 −0.82 −0.44 −0.70 −0.35 0.71 −0.79 0.72 0.35 Oct-95 0.40 −2.23 −1.93 −0.58 −0.65 −4.62 −1.08 −0.65 Oct-99 0.18 −0.13 −0.13 0.24 0.69 −0.35 0.61 0.77 Nov-95 −1.71 −2.53 −2.06 −0.26 −1.64 −4.61 −1.17 −1.36 Nov-99 0.07 −0.47 −0.09 0.34 0.41 −0.54 0.01 0.49 Dec-95 0.31 −1.84 −0.96 0.27 0.39 −3.02 0.26 −0.80 Dec-99 −0.35 −0.86 −0.38 0.11 −0.42 −0.83 −0.42 0.03 Jan-96 1.26 −1.62 −0.39 0.71 1.29 −2.04 0.59 −0.04 Jan-00 −0.56 −1.16 −0.43 −0.31 −1.00 −0.96 −0.31 −0.28 Feb-96 1.18 −1.31 −0.08 0.34 1.44 −1.56 0.95 0.67 Feb-00 −0.35 −1.33 −0.66 −0.66 −1.42 −1.93 −1.33 −0.74 Mar-96 1.03 −1.08 0.06 0.63 0.68 −1.68 0.47 0.74 Mar-00 −0.59 −1.17 −1.07 −1.28 −1.64 −2.44 −1.06 −0.93 Apr-96 0.59 −1.24 0.21 0.69 −0.40 −2.03 −0.06 0.55 Apr-00 −0.37 −0.96 −0.69 −0.95 −0.45 −1.75 −0.34 −1.01 May-96 0.53 −0.93 0.47 0.81 −0.21 −1.61 0.17 0.26 May-00 −0.09 −1.29 −0.27 −0.49 0.31 −1.74 −0.14 −0.66 Jun-96 0.54 −0.81 0.22 0.23 −0.27 −1.59 −0.38 −0.06 Jun-00 0.10 −1.26 −0.43 −0.69 0.21 −1.83 −0.82 −0.43 Jul-96 0.68 −0.74 0.24 −0.27 0.18 −1.41 −0.19 −0.07 Jul-00 −0.31 −1.23 −0.65 −0.70 −0.41 −1.34 −1.19 −0.60 Aug-96 0.54 −0.70 −0.07 −0.42 −0.14 −1.19 −0.16 −0.30 Aug-00 −0.70 −1.33 −0.63 −0.36 −1.62 −1.04 −1.00 −1.11 Sep-96 0.72 −0.40 0.61 0.51 1.12 −0.04 1.70 0.80 Sep-00 −1.05 −1.43 −1.26 −0.96 −2.58 −1.58 −1.70 −1.79 Oct-96 0.62 −0.80 0.56 0.14 0.21 −1.05 −0.81 −0.03 Oct-00 −1.05 −0.81 −0.89 −0.33 0.15 −0.28 0.68 −0.36 Nov-96 0.59 −0.59 0.85 0.43 0.66 −0.29 0.35 0.25 Nov-00 −1.06 −0.71 −0.82 −0.51 0.26 −0.23 0.36 0.23 Dec-96 1.24 −0.13 0.77 1.17 0.70 0.96 1.63 0.60 Dec-00 −0.63 −0.70 −0.53 0.07 1.29 0.24 0.61 0.67 Jan-97 1.46 0.53 1.24 1.78 1.96 3.03 2.12 1.69 Jan-01 −0.19 −0.56 −0.24 0.43 0.62 0.65 0.55 0.59 Feb-97 1.50 0.45 0.90 1.57 1.39 1.89 0.71 1.58 Feb-01 0.17 −0.44 0.11 0.59 0.71 0.51 0.53 0.59 Mar-97 1.33 0.37 0.72 0.73 0.57 0.59 −0.58 0.86 Mar-01 0.43 −0.60 0.26 1.04 0.50 0.04 0.17 0.47 Apr-97 0.94 0.73 1.00 1.21 −0.72 0.66 −0.17 0.02 Apr-01 0.63 −0.58 −0.06 0.29 −0.10 −0.55 −0.25 0.22 May-97 0.78 0.88 0.95 1.03 0.36 1.03 0.27 −0.27 May-01 0.53 −0.38 −0.02 0.38 0.07 −0.35 −0.05 0.00 Jun-97 0.80 0.95 1.32 1.23 1.42 1.41 1.57 0.35 Jun-01 0.10 −0.48 −0.07 −0.07 −0.58 −0.65 −0.99 −0.38 Jul-97 0.99 1.02 1.39 0.61 1.41 0.59 2.19 1.14 Jul-01 −0.18 −0.60 −0.06 −0.50 −0.51 −0.32 −1.19 −0.61 Aug-01 −0.21 −0.58 0.03 −0.55 −1.24 −0.21 −0.53 −1.02

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.