Arnold Knott Improvement of out-of-band Behaviour in Switch-Mode Amplifiers and Power Supplies by their Modulation Topology Ph.d. Thesis, August 2010 Arnold Knott Improvement of out-of-band Behaviour in Switch-Mode Amplifiers and Power Supplies by their Modulation Topology Ph.d. Thesis, August 2010 Preface The Ph.D. project“Improvement of out-of-band Behaviour in Switch-Mode Amplifiers and Power Supplies by their Modulation Topology”was carried outunderthePh.D.schoolat“DTUElektro”atthe“TechnicalUniversityof Denmark”inKongensLyngbyinclosecollaborationwiththeamplifiergroup from“Harman/Becker Automotive Systems GmbH”in Straubing, Germany. During the project, a research visit was carried out at the“Power Electron- ics Systems Laboratory”at the“Eidgen¨ossische Technische Hochschule”in Zu¨rich. During the project time, I had the pleasure to meet and discuss with many specialists in the field. Special thanks goes to • the students Martin Persson, Jacob Mebus Meyer, Annie Rydholm, Daniel Nilsson, Søren Pedersen, Nicholai Rudbeck Zickert, Dennis Nielsen,TheisChristiansen,TokeAndersen,KristianLindberg-Poulsen, Tore Stegenborg-Andersen, Rasmus Trock Kinnerup, Jakob Døllner Mønster, Niels Christian Buhl, Lasse Emil Korff, Johan Grundtvig, Søren Jørgensen Herslund and all other participants in the“Electron- ics Group”, for being interested in exploring switch-mode power elec- tronics together with me, • the supervisors Gerhard Paffinger and Prof. Michael A. E. Andersen, for their inspiration and excellent mentoring along the way, • the“Electronics Group”, especially Assoc. Prof. Ole Cornelius Thom- sen, Mikkel Christian Kofod Høyerby, Lars Tønnes Jacobsen, Zhe Zhang, Kaspar Sinding Meyer and Thomas Andersen, for there rich discussions, • the colleagues at “Harman/Becker Automotive Systems GmbH”, for keeping my research efforts practically relevant, • thecolleaguesGeraldStanleyat“CrownInternationalInc.” andDavid McCorkleat“McCorkle Design Group”, for preventingme from falling into pitfalls, that have been solved many decades ago, • the“Power Electronics Systems”group at the ETH Zu¨rich for showing me world-class approaches to build even better switch-mode power electronics. Summary Switch-modepowerelectronicsisdisturbingotherelectroniccircuitsbyemis- sionofelectromagneticwavesandsignals. Toallowtransmissionofinforma- tion, a set of regulatory rules (electromagnetic compatibility (EMC)) were created to limit this disturbance. To fulfill those rules in power electronics, shielding and filtering is required, which is limiting the size reduction. The motivationforthisprojectwastofindalternativewaystoavoidtroublewith interference of switch-mode power electronics and transmission and receiver circuits. An especial focus is given to audio power amplifiers. After a historical overview and description of interaction between power electronics and electromagnetic compatibility (chapter 1), the thesis will first show the impact of the high frequency signals on the audio perfor- mance of switch-mode audio power amplifiers (chapter 2). Therefore the work of others will be put into perspectiveand self-oscillatingamplifiers will be compared with external synchronized topologies. After that, solutions to the problem, which are widespread in industry will be given and explained (chapter 3). The challenges and advantages will be described. The improvement of the described problem where four different approaches: • Multi Carrier Modulation (MCM) • Active Electromagnetic Cancellation (AEC) • Current Driven Power Stages (CDP) • Radio Frequency Power Electronics (RF SMPS) Multi Carrier Modulation (chapter 4) is using more than one external car- rier and generating multiple PWM signals. Those are combined by a logic circuit to one pulse coded information stream. The average of this stream is proportionaltothemodulatedsignal, whilethespectralpeaksoftheswitch- ingfrequenciesarehalfcomparedtostate-of-theartpulsewidthmodulation (PWM). Active Electromagnetic Cancellation (chapter 5) has been known as active filtering in power electronics. It has been applied to switch mode audio power amplifiers. The specialty for the later will be described and a design is shown, decreasing the undesired spectrum by 15 dB. A different approach to tackle the problem is given by an alternative power stageinCurrentdrivenPowerStages(chapter6). Afocusofthisapproachis to minimize the biggest components, the inductors, in the filters of switch- mode power electronics. This approach results in a size reduction of the filters by around 84 %. A very promising approach to remove the interference of power electronics circuits and telecommunication circuits is to stay away from the frequen- cies used for information transmission. Even though the electromagnetic spectrum is used without any exceptions, the situation can be optimized for audio applications. This is done by using switching frequencies beyond the communication frequencies and will be described in Radio Frequency Power Electronics (chapter 7). Each chapter ends with a section printed in italic. These paragraphs are meant to link the respective chapter with the rest of the work and therefore enables the reader to investigate only parts of the work, while getting the perspective to the rest. Dansk Resum´e Switch-modeeffektelektronikforstyrrerandreelektroniskekredsløbvedemis- sion af elektromagnetiske felter og signaler. Derfor blev en række regula- toriske regler (elektromagnetisk kompatibilitet) sat op, som muliggør trans- mission af informationer. For at opfylde disse regler, er skærmning og filtrering nødvendig, disse begrænser størrelsesreduktion af effektelektron- ikkredsløb. Motivationen til projektet var, at finde andre muligheder for at forhindre problemer med kobling mellem switch-mode effektelektronik og transmission- eller modtagerkredsløb. Der var specielt fokus p˚a audio effek- tforstærker. Efter et historisk overblik og beskrivelse om vekselvirkning mellem effek- telektronik og elektromagnetisk kompatibilitet (kapitel 1), beskriver afhan- dlingen p˚avirkning af højfrekvente signaler p˚a lydkvalitet af switch-mode audio effektforstærkere (kapitel 2). Andres arbejde vil blive perspektiveret og selvoscillerende systemer vil blive sammenlignet med ekstern synkronis- erede topologier. Efterfølgende vil nuværende udbredte løsninger, som anvendes i industrien, blive forklaret (kapitel 3). Deres udfordringer og fordele vil blive beskrevet. Forbedring af det beskrevede problem var fire løsninger: • Multi Carrier Modulation (MCM) • Active Electromagnetic Cancellation (AEC) • Strømdrevet effekttrin (CDP) • Radiofrekvens effektelektronik (RF SMPS) MultiCarrierModulation(kapitel4)benyttermereendeneksterncarrierog generer derfor flere pulsebredemodulation (PWM) signaler. Disse signaler bliver kombineret ved logiske kredsløb og skaber en pulstog. I gennemsnit er pulsene proportionale med modulationssignalet, mens de spektrale toppe kun er halvt s˚a store som i konventionel PWM. ActiveElectromagneticCancellation(kapitel5)harværetkendtieffektelek- tronik som aktiv filtrering. Princippet blev anvendt p˚a switch-mode audio effektforstærkere. Det specielle hermed er beskrevet og en prototype viser en forbedring p˚a 15 dB. Etandetforsøgp˚aatangribeproblemetergjortvedetalternativeeffekttrin i CDPen (kapitel 6). M˚alet af forsøget er at mindske de største komponen- ter, nemlig spolerne, i filtre fra switch-mode effektelektronik. Metoden giver en formindskelse p˚a cirka 84 %. En meget lovende mulighed for at fjerne interferens mellem effektelektronik og telekommunikationskredsløb er at undg˚a frekvenser, som benyttes til in- formationstransmission. Selvom hele det elektromagnetiske spektrum bliver benyttetudenundtagelser,kansituationenforbedresindenforaudioapplika- tioner. Det bliver gjort ved at sætte switch-frekvensen over de benyttede kommunikationsfrekvenser og er beskrevet i radiofrekvens effektelektronik (kapitel 7). Hvert kapitel slutter med en paragraf i kursiv. Denne paragraf forbinder kapitlet med resten af afhandlingen og skal derfor give mulighed for læseren for at undersøge dele af beskrivelsen, mens man beholder sammenhængen til resten. Deutsche Zusammenfassung Schaltnetzteile st¨oren andere elektronische Schaltungen durch Aussendung elektromagnetischerFelderundSignale. UmdieU¨bermittlungvonInforma- tionen zu erm¨oglichen, wurden regulative Bestimmungen (Elektromagnetis- che Vertr¨aglichkeit) geschaffen, welche die St¨orungen limitieren sollen. Um dieseRegelnzuerfu¨llen,isteserforderlich,dieleistungselektronischenSchal- tungen zu schirmen und zu filtern, was deren physikalische Gr¨oße bestimmt. Motivation dieses Projekts ist es, Alternativen zu finden, die die Probleme der Beeintr¨achtigung von Sendern und Empf¨angern durch Schaltnetzteile verhindern. Spezieller Fokus liegt dabei auf geschalteten Audioverst¨arkern. NacheinemhistorischenU¨berblickundderBeschreibungderWechselwirkung vonLeistungselektronikundelektromagnetischerVertr¨aglichkeit(Kapitel1), zeigt diese Arbeit den Einfluss hochfrequenter Signale auf die Audioperfor- mance von geschalteten Audioleistungsverst¨arkern (Kapitel 2). Dazu wird dieArbeitvonanderenerl¨autertundselbstoszillierendeSystemewerdenmit extern synchronisierten verglichen. Danach werden die in der Industrie weitverbreiteten L¨osungen vorgestellt (Kapitel 3) und deren Herausforderungen und M¨oglichkeiten aufgezeigt. DieVerbesserungderProblemstellungsindvierverschiedeneVorgehensweisen: • Multi Carrier Modulation (MCM) • Active Electromagnetic Cancelation (AEC) • Stromgespeiste Leistungsstufen (CDP) • Radiofrequenzleistungselektronik (RF SMPS) MultiCarrierModulation(Kapitel4)benu¨tztmehralseinexternesTr¨agersig- nal und generiert damit mehrere PWM-Signale. Diese werden anhand einer
Description: