ebook img

Implementing analytics: a blueprint for design, development, and adoption PDF

234 Pages·2013·4.43 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Implementing analytics: a blueprint for design, development, and adoption

Implementing Analytics This page intentionally left blank Implementing Analytics A Blueprint for Design, Development, and Adoption Nauman Sheikh AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Morgan Kaufmann is an imprint of Elsevier Acquiring Editor: Andrea Dierna Editorial Project Manager: Heather Scherer Project Manager: Punithavathy Govindaradjane Designer: Russell Purdy Morgan Kaufmann is an imprint of Elsevier 225 Wyman Street, Waltham, MA 02451, USA Copyright © 2013 Elsevier Inc. All rights reserved No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods or professional practices, may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information or methods described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility. To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein. Library of Congress Cataloging-in-Publication Data Sheikh, Nauman Mansoor. Implementing analytics : a blueprint for design, development, and adoption/Nauman Sheikh. pages cm Includes bibliographical references and index. ISBN 978-0-12-401696-5 (alk. paper) 1. System analysis. I. Title. T57.6.S497 2013 003—dc23 2013006254 British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library For information on all MK publications, visit our website at www.mkp.com Printed and bound in the United States of America 13 14 15 16 17 10 9 8 7 6 5 4 3 2 1 Contents ACKNOWLEDGMENTS .............................................................................xi AUTHOR BIOGRAPHY ............................................................................xiii INTRODUCTION .......................................................................................xv Part 1 Concept CHAPTER 1 Defining Analytics .............................................................3 The Hype ......................................................................................3 The Challenge of Definition ........................................................4 Definition 1: Business Value Perspective ...............................5 Definition 2: Technical Implementation Perspective ............6 Analytics Techniques ..................................................................7 Algorithm versus Analytics Model .........................................8 Forecasting ...............................................................................9 Descriptive Analytics .............................................................11 Predictive Analytics ...............................................................13 Decision Optimization ............................................................18 Conclusion of Definition ............................................................20 CHAPTER 2 Information Continuum ...................................................21 Building Blocks of the Information Continuum .......................22 Theoretical Foundation in Data Sciences .............................23 Tools, Techniques, and Technology......................................24 Skilled Human Resources ......................................................24 Innovation and Need ..............................................................25 Information Continuum Levels .................................................25 Search and Lookup .................................................................26 Counts and Lists .....................................................................27 Operational Reporting............................................................28 Summary Reporting ...............................................................29 Historical (Snapshot) Reporting ............................................30 Metrics, KPIs, and Thresholds ...............................................31 v Analytical Applications ..........................................................33 vi Contents Analytics Models ....................................................................35 Decision Strategies .................................................................36 Monitoring and Tuning—Governance ..................................38 Summary .....................................................................................40 CHAPTER 3 Using Analytics ................................................................41 Healthcare ..................................................................................42 Emergency Room Visit ...........................................................42 Patients with the Same Disease ............................................43 Customer Relationship Management .......................................44 Customer Segmentation ........................................................44 Propensity to Buy ...................................................................45 Human Resource ........................................................................46 Employee Attrition .................................................................46 Resumé Matching ...................................................................47 Consumer Risk ...........................................................................48 Borrower Default ....................................................................49 Insurance ....................................................................................49 Probability of a Claim .............................................................50 Telecommunication ....................................................................51 Call Usage Patterns ................................................................51 Higher Education .......................................................................51 Admission and Acceptance ...................................................52 Manufacturing ............................................................................52 Predicting Warranty Claims ..................................................53 Analyzing Warranty Claims ...................................................54 Energy and Utilities ...................................................................54 The New Power Management Challenge ............................55 Fraud Detection ..........................................................................57 Benefits Fraud.........................................................................57 Credit Card Fraud ...................................................................57 Patterns of Problems ..................................................................58 How Much Data ......................................................................59 Performance or Derived Variables ........................................59 Part 2 Design CHAPTER 4 Performance Variables and Model Development ..........63 Performance Variables ...............................................................63 What are Performance Variables? .........................................64 Designing Performance Variables .........................................70 Working Example ...................................................................73 Model Development ...................................................................75 Contents vii What is a Model? ....................................................................75 Model and Characteristics in Predictive Modeling .............75 Model and Characteristics in Descriptive Modeling ...........78 Model Validation and Tuning ................................................79 Champion–Challenger: A Culture of Constant Innovation ....82 CHAPTER 5 Automated Decisions and Business Innovation............85 Automated Decisions .................................................................85 Decision Strategy .......................................................................85 Business Rules in Business Operations ...............................87 Decision Automation and Business Rules ............................88 Joint Business and Analytics Sessions for Decision Strategies .................................................................89 Examples of Decision Strategy ..............................................89 Decision Automation and Intelligent Systems ........................94 Learning versus Applying .....................................................94 Strategy Integration Methods ...............................................96 Strategy Evaluation....................................................................97 Retrospective Processing .......................................................97 Reprocessing...........................................................................97 Champion–Challenger Strategies .............................................98 Business Process Innovation .................................................98 CHAPTER 6 G overnance: Monitoring and Tuning of Analytics Solutions .........................................................................101 Analytics and Automated Decisions ......................................101 The Risk of Automated Decisions .......................................102 Monitoring Layer ..................................................................102 Audit and Control Framework ................................................103 Organization and Process ....................................................103 Audit Datamart .....................................................................104 Control Definition .................................................................106 Reporting and Action ...........................................................108 Part 3 Implementation CHAPTER 7 Analytics Adoption Roadmap .......................................113 Learning from Success of Data Warehousing ........................113 Lesson 1: Simplification .......................................................113 Lesson 2: Quick Results .......................................................114 Lesson 3: Evangelize ...........................................................114 Lesson 4: Efficient Data Acquisition ..................................115 Lesson 5: Holistic View .......................................................115 viii Contents Lesson 6: Data Management...............................................115 The Pilot ....................................................................................117 Business Problem .................................................................117 Management Attention and Champion ..............................118 The Project ............................................................................119 Results, Roadshow, and Case for Wider Adoption ............125 CHAPTER 8 Requirements Gathering for Analytics Projects ..........129 Purpose of Requirements ........................................................129 Requirements: Historical Perspective ....................................129 Calculations ..........................................................................130 Process Automation .............................................................132 Analytical and Reporting Systems ......................................132 Analytics and Decision Strategy .........................................133 Requirements Extraction .........................................................134 Problem Statement and Goal ...............................................135 Data Requirements ...............................................................139 Model and Decision Strategy Requirements ......................142 Business Process Integration Requirements .....................144 CHAPTER 9 Analytics Implementation Methodology .....................147 Centralized versus Decentralized ...........................................148 Centralized Approach ..........................................................148 Decentralized Approach ......................................................149 A Hybrid Approach ..............................................................149 Building on the Data Warehouse ............................................149 Methodology .............................................................................151 Requirements ........................................................................152 Analysis .................................................................................153 Design....................................................................................158 Implementation ....................................................................164 Deployment ...........................................................................165 Execution and Monitoring ...................................................165 CHAPTER 10 Analytics Organization and Architecture ....................167 Organizational Structure .........................................................167 BICC Organization Chart .....................................................168 Roles and Responsibilities ...................................................170 Skills Summary .....................................................................175 Technical Components in Analytics Solutions ......................176 Analytics Datamart ..............................................................176 Contents ix CHAPTER 11 Big Data, Hadoop, and Cloud Computing ....................185 Big Data ....................................................................................185 Velocity ..................................................................................186 Variety ...................................................................................187 Volume ...................................................................................187 Big Data Implementation Challenge ...................................188 Hadoop ......................................................................................189 Hadoop Technology Stack ...................................................189 Hadoop Solution Architecture .............................................191 Hadoop as an Analytical Engine .........................................193 Cloud Computing (For Analytics) ...........................................196 Disintegration in Cloud Computing ....................................196 Analytics in Cloud Computing ............................................197 CONCLUSION .........................................................................................199 REFERENCES ..........................................................................................203 INDEX ......................................................................................................207

Description:
Implementing Analytics demystifies the concept, technology and application of analytics and breaks its implementation down to repeatable and manageable steps, making it possible for widespread adoption across all functions of an organization. Implementing Analytics simplifies and helps democratize a
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.