IMAGE ANALYSIS OF AIR VOIDS IN AIR-ENTRAINED CONCRETE BY GEORGE R. DEWEY DAVID DARWIN A Report on Research Sponsored by AXIM Concrete Technologies, Inc. (formerly Solvay Construction Materials, Inc.) UNIVERSITY OF KANSAS LAWRENCE, KANSAS AUGUST 1991 ABSTRACT The application of image analysis techniques to characterize the air-void system in hardened concrete is demonstrated. Both lineal and areal feature analyses are investigated. Feature size distributions and total air contents are obtained using s both types of analysis. The areal analyses also include the measurement of individual feature perimeters for use in comparing void shapes. A two phase standard specimen ip developed to insure the consistency of measurements and repeatability of results. Correction methods, based on geometric probability, are developed to remove the distortions in the image analysis data resulting from frame edge effects. Separate r:nethods are presented for lineal and areal analyses. Using discrete class sizes, both correction procedures are expressed in a matrix format. The corrected areal feature distributions are used to obtain volume distributions of spherical air voids using standard stereological procedures. The procedures are applied to ten concrete specimens, at magnifications of 12x and 30x. The specimens represent concretes made using three different air- entraining admixtures, as well as non-air entrained concrete. Air-void parameters calculated from corrected image analysis results for the ten specimens are compared to results obtained using the modified point count method and to freeze-thaw results obtained from surface scaling tests of companion specimens. The differences in the air-void systems created by the various air-entraining agents are studied by comparing different characteristics including: the Powers spacing factor, the Philleo factor, profile shape, average feature size, numerical density of features, and the cumulative percent of total air versus feature size. i i The study demonstrates that image analysis provides a viable alternative to traditional lineal traverse and modified point count methods for characterization of air-void systems in hardened concrete and, in the process, provides significant detail not available with the traditional methods. The study indicates that air entraining agents produce characteristic air void distributions. Comparisons made in the study show that lineal and areal image analysis techniques provide similar determinations of total air content that are, on average, 1. i 5 volume percent lower than those obtained from a modified point count analysis. Application of the frame edge effect correction procedures to the lineal data results in an average decrease in the total chord density of 2.3% and 5.0% for magnifications of i 2x and 30x, respectively. Application of the frame edge effect correction proced.ures tq the areal data results in an average decrease in the total profile density of 3.3% and 5.9% for magnifications of i 2x and 30x, respectively. The accuracy of the analysis decreases if size classes are much greater than 30 Jlm. Accurate lineal analyses require the class size to be an exact increment of pixel length. A similar requirement does not apply to areal analyses. iii ACKNOWLEDGMENTS This report is based on a thesis presented by George R. Dewey in partial fulfillment of the requirements for the Ph.D. degree. The research was supported by AXIM Concrete Technologies, Inc., formerly Solvay Construction Materials, Inc. Additional support was provided by the University of Kansas Center for Research, Inc. and the Department of Civil Engineering. Donald R. Lane, President of AXIM Concrete Technologies, Inc., supervised preparation of the concrete test samples described in this report. Professional Services Industries performed manual modified point count analyses of the samples. Image analyses were performed in the School of Engineering Microanalysis Laboratory. The numerical calculations were performed on Apollo work stations in the Microanalysis Laboratory and in the Civil Engineering Graduate Graphics and Computer Applications Laboratory. iv TABlE OF CONTENTS ABSTRACT ACKNOWlEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii UST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi UST OF FIGURES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 General ................................... 1 1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Measures of Frost Resistance . . . . . . . . . . . . . . . . . . . . . 7 1.4 Air Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5 Object and Soope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 CHAPTER 2 EXPERIMENTAL STUDY . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.1 Test Specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2 Surface Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3 Image Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4 Image Analysis Data . . . . . . . . . . . . . . . . . . . . . . . . . . 34 CHAPTER 3 EDGE EFFECT CORRECTIONS AND AREA TO VOLUME TRANSFORMATION .............................. 44 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.2 Correction of Edge Effects for Lineal Features . . . . . . . . . . 46 3.3 Correction of Edge Effects for Areal Features . . . . . . . . . . 52 3.4 Area to Volume Conversion . . . . . . . . . . . . . . . . . . . . . . 58 3.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 v TABLE.OF CONTENTS (continued) Ewe. CHAPTER4 DATAEVALUATION .............. , ............... 88 4. i Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.3 Air-void Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.5 Comparison of Admixtures . . . . . . . . . . . . . . . . . . . . . . 96 CHAPTER 5 SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . i 00 5. i Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 00 5.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 02 5.3 Future Work .............. , . . . . . . . . . . . . . . . i 05 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 07 TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i i3 FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 APPENDIX A BATCHING AND STRENGTH TEST RESULTS . . . . . . . . . . . . . . . 22 i APPENDIX 8 MODIFIED POINT COUNT TEST RESULTS . . . . . . . . . . . . . . . . 227 APPENDIXC ANALYSISOFUNEALDATA ........................ 233 APPENDIX D ANALYSIS OF AREAL DATA . . . . . . . . . . . . . . . . . . . . . . . . 277 APPENDIX E CALCULATION OF Ai . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3i 8 E. i Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3i 8 E.2 Equations for AED. . . . . . . . . . . . . . . . . . . . . . . . . . . 3i 9 E.3 Determination of A;i . . . . . . . . . . . . . . . . . . . . . . . . . 323 vi LIST OFTA BLES Table No. ~ 2.1 Individual mix properties and compressive strength results 113 2.2 Modified point count test results ...... . 114 2.3 Scaling test results 115 2.4 Air content results 116 2.5 Average form factor - 12x magnification 117 2.6 Average form factor - 30x magnification 119 2.7 Form factors ........................... . 121 2. 8 Statistical summary of image analysis areal data . . . . . . . . . . . . . 122 2. 9 Statistical summary of image analysis 480 lines/frame lineal data . . 123 2. 1 0 Statistical summary of image analysis 1 line/frame lineal data 124 3. 1 Matrix of coefficients Kij used in the calculation of a measured distribution, NL(i)*, by Eq. 3.13. 20 classes, L = 2995.2 ~m. class width = 29.25 ~m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 3.2 Example showing the calculation of a measured distribution, NL{i)*, using a hypothetical true distribution, NLGl . . . . . . . . . . . . . . . . 126 3.3 Matrix of coefficients <X_ij used in the calculation of a true distribution, NL(i}. by Eq. 3.14. 20 classes, L = 2995.2 ~m. class width = 29.25 ~m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 3.4 Example showing the calculation of a true distribution, NL(i), using a hypothetical measured distribution, NL(j)* . . . . . . . . . . . . 128 3.5 Edge effect correction of mix 8 lineal data using 80 classes of 29.25 ~m width .......................... . 129 3. 6 Edge effect correction of mix 8 lineal data using 40 classes of 58.50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 3. 7 Edge effect correction of mix 8 lineal data using 20 classes of 117.00 ~m width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 y i i LIST OF TABLES (continued) Table No. 3.8 Edge effect correction of mix 8 lineal data using 10 classes of 234.00 lim width ......................... . 133 3.9 Matrix of coefficients K; used in the calculation of a measured 1 distribution, NL(i)', by Eq. 3.13. 20 classes, L = 2995.2 lim. class width = 117.0 lim ............................ . 134 3.10 Matrix of coefficients a_ij used in the calculation of a true distribution, NL(i), by Eq. 3.14. 20 classes, L = 2995.2 lim. class width = 117.0 lim ............................ . 135 3.11 Summary of edge effect correction of mix 8 lineal data using different class sizes ......................... . 136 3.12 Edge effect correction of mix 8 lineal data using 40 classes of 29.25 lim width . . . . . . . . . . . . . . . . . . . . . . . . . . 137 3. 1 3 Edge effect correction of mix 8 lineal data using 20 classes of 29.25 lim width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 3.1 4 Edge effect correction of mix 8 lineal data using 10 classes of 29.25 lim width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 3. 1 5 Summary of edge effect correction of mix 8 lineal data truncated at different classes of 29.25 lim . . . . . . . . . . . . . . . . . . . . . . . . 140 3. 1 6 Matrix of coefficients M; used in the calculation of a measured 1 distribution, NA(i)', by Eq. 3.28. 20 classes, L = 2995.2 lim. H = 2252.8 lim. class width = 25 lim . . . . . . . . . . . . . . . . . . . . 141 3.17 Example showing the calculation of a measured distribution, NA(i)*, using a hypothetical true distribution, NA(j) ........... 142 3.18 Matrix of coefficients Nli used in the calculation of a true distribution, NA(i). by Eq. 3.29. 20 classes, L = 2995.2 lim. H = 2252.8 lim. class width = 25 lim ................... . 143 3.1 9 Example showing the calculation of a true distribution, NA(i), using a hypothetical distribution, NA(il . . . . . . . . . . . . . . . . . . . 144 3. 20 Edge effect correction of mix 8 areal data using 80 classes of 25 lim width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 3. 21 Edge effect correction of mix 8 areal data using 40 classes of 50 lim width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 viii LIST OF TABLES (continued) Table No. 3. 22 Edge effect correction of mix 8 areal data using 20 classes of 100 ~m width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 3.23 Edge effect correction of mix 8 areal data using 10 classes of 200 ~m width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 3. 24 Summary of edge effect correction of mix 8 areal data using different class sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 3.25 Edge effect correction of mix 8 areal data truncated at 40 classes of 25 ~m width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 3. 2 6 Edge effect correction of mix 8 areal data truncated at 20 classes of 25 ~m width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 3. 2 7 Edge effect correction of mix 8 areal data truncated at 10 classes of 25 ~m width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 3.28 Summary of edge effect correction of mix 8 areal data truncated at different classes of 25 ~m . . . . . . . . . . . . . . . . . . . . . 154 3.29 Matrix of coefficients B;j used in the calculation of an areal distribution, NA(i}, from a volume distribution,Nv ( i) , using Eq. 3.53 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 3.30 Example showing the calculation of an areal distribution, NA(i), using a hypothetical volume distribution, Nv(j) . . . . . . . . . . . . . . 156 3.31 Matrix of coefficients J; used in the calculation of a volume 1 distribution, Nv(i), from an areal distribution,NA ( i), using Eq. 3.54 ............................. . 157 3.32 Example showing the calculation of a volume distribution, Nv(i), from a synthetic area distribution, NA(j). . . . . . . . . . . . . . . . . 158 3. 3 3 Area-to-volume conversion of mix 8 areal data using 80 classes of 25 ~m width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 3. 3 4 Area-to-volume conversion of mix 8 areal data using 40 classes of 50 ~m width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 3.35 Area-to-volume conversion of mix 8 areal data using 20 classes of 1 00 ~m width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 ix LIST OF TABLES (continued) TableNo. ~ 3.36 Area-to-volume conversion of mix 8 areal data using 10 classes of 200 J.Lm width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 3.37 Summary of area-to-volume conversion of mix 8 areal data using different size classes .................... . 164 3.38 Area-to-volume conversion of mix 8 areal data truncated at 40 classes of 25 J.Lm width . . . . . . . . . . . . . . . . . . . . . 165 3. 3 9 Area-to-volume conversion of mix 8 areal data truncated at 20 classes of 25 11m width . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 3.40 Area-to-volume conversion of mix 8 areal data truncated at 10 classes of 25 11m width . . . . . . . . . . . . . . . . . . . . . 167 3.41 Summary of area-to-volume conversion of mix 8 areal data using distributions truncated at different classes of 25 J.Lm width . . . . . . . 168 3. 4 2 Comparison of spacing factors from volume distributions calculated using the largest 85 and 40 classes of measured areal data . . . . . . . 1 69 4.1 Lineal analysis total chord density 170 4.2 Areal analysis total profile density 171 4.3 Total number of air voids per unit volume -magnification 12x 172 4.4 Total number of air voids per unit volume - magnification 30x 173 4. 5 Average chord, profile, and air-void sizes for magnifications of 12x and 30x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 4.6 Air-void spacing parameters ................... . 175 A.1 Batching and compression test results for mix 1 and mix 2 222 A.2 Batching and compression test results for mix 3 and mix 4 223 A.3 Batching and compression test results for mix 5 and mix 6 224 A.4 Batching and compression test results for mix 7 and mix 8 225 A.S Batching and compression test results for mix 9 and mix 10 . . . . . . 226
Description: