ebook img

IFISS, a Matlab toolbox for modelling incompressible flow Elman, Howard C. and Ramage, Alison ... PDF

19 Pages·2017·0.23 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview IFISS, a Matlab toolbox for modelling incompressible flow Elman, Howard C. and Ramage, Alison ...

Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow Elman, Howard C. and Ramage, Alison and Silvester, David J. 2007 MIMS EPrint: 2005.45 Manchester Institute for Mathematical Sciences School of Mathematics The University of Manchester Reports available from: http://eprints.maths.manchester.ac.uk/ And by contacting: The MIMS Secretary School of Mathematics The University of Manchester Manchester, M13 9PL, UK ISSN 1749-9097 Algorithm 866: IFISS, A Matlab Toolbox for Modelling Incompressible Flow HOWARDC.ELMAN UniversityofMaryland ALISONRAMAGE UniversityofStrathclyde and DAVIDJ.SILVESTER UniversityofManchester IFISSisagraphicalMatlabpackagefortheinteractivenumericalstudyofincompressibleflow problems.Itincludesalgorithmsfordiscretizationbymixedfiniteelementmethodsandaposteriori error estimation of the computed solutions. The package can also be used as a computational laboratoryforexperimentingwithstate-of-the-artpreconditionediterativesolversforthediscrete linearequationsystemsthatariseinincompressibleflowmodelling.Auniquefeatureofthepackage isitscomprehensivenature;foreachproblemaddressed,itenablesthestudyofbothdiscretization anditerativesolutionalgorithmsaswellastheinteractionbetweenthetwoandtheresultingeffect onoverallefficiency. Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra— Linearsystems(directanditerativemethods);G.1.8[NumericalAnalysis]:PartialDifferential Equations—Ellipticequations,finiteelementmethods,iterativesolutiontechniques,multigridand multilevelmethods;G.4[MathematicalSoftware];J.2[PhysicalSciencesandEngineering] GeneralTerms:Algorithms,Design,Documentation AdditionalKeyWordsandPhrases:Matlab,finiteelements,incompressibleflow,iterativesolvers, stabilization The work of H. C. Elman was supported by the U.S. National Science Foundation under grant DMS0208015andbytheU.S.DepartmentofEnergyundergrantDOEG0204ER25619. Authors’addresses:H.C.Elman,Dept.ofComputerScience,UniversityofMaryland,CollegePark, MD20742;email:[email protected];A.Ramage,Dept.ofMathematics,UniversityofStrathclyde, 26RichmondStreet,GlasgowG11XH,UK;email:[email protected];D.J.Silvester,School of Mathematics, University of Manchester, Sackville Street, Manchester M60 1QD, UK; email: [email protected]. Permissiontomakedigitalorhardcopiesofpartorallofthisworkforpersonalorclassroomuseis grantedwithoutfeeprovidedthatcopiesarenotmadeordistributedforprofitordirectcommercial advantageandthatcopiesshowthisnoticeonthefirstpageorinitialscreenofadisplayalong withthefullcitation.CopyrightsforcomponentsofthisworkownedbyothersthanACMmustbe honored.Abstractingwithcreditispermitted.Tocopyotherwise,torepublish,topostonservers,to redistributetolists,ortouseanycomponentofthisworkinotherworksrequirespriorspecificper- missionand/orafee.PermissionsmayberequestedfromthePublicationsDept.,ACM,Inc.,2Penn Plaza,Suite701,NewYork,NY10121-0701USA,fax+1(212)869-0481,[email protected]. (cid:2)C 2007ACM0098-3500/2007/06-ART14$5.00DOI10.1145/1236463.1236469http://doi.acm.org/ 10.1145/1236463.1236469 ACMTransactionsonMathematicalSoftware,Vol.33,No.2,Article14,Publicationdate:June2007. 2 • H.C.Elmanetal. ACMReferenceFormat: Elman,H.C.,Ramage,A.,andSilvester,D.J.2007.Algorithm866:IFISS,amatlabtoolboxfor modellingincompressibleflow.ACMTrans.Math.Softw.,33,2,Article14(June2007),18pages. DOI=10.1145/1236463.1236469 http://doi.acm.org/10.1145/1236463.1236469 1. INTRODUCTION ThisarticledescribestheIncompressibleFlowIterativeSolutionSoftware(IFISS) package, a collection of over 290 matlab functions and m-files organised as a matlabtoolbox.Thetoolboxcanbeusedtocomputenumericalsolutionsofpar- tialdifferentialequations(PDEs)thatareusedtomodelsteadyincompressible fluid flow. It includes algorithms for discretization by finite element methods, fast iterative solution of the algebraic systems that arise from discretization, andaposteriorierroranalysisofthecomputeddiscretesolutions.Thepackage wasproducedinconjunctionwiththemonographFiniteElementsandFastIter- ativeSolversbyElmanetal.[2005b],anditwasusedtoperformthecomputa- tionalexperimentsdescribedtherein.Itisstructuredasastand-alonepackage forstudyingdiscretisationalgorithmsforPDEsandforexploringanddevelop- ingalgorithmsinnumericallinearandnonlinearalgebraforsolvingtheasso- ciated discrete systems. It can also be used as a pedagogical tool for studying theseissues,ormoreelementaryonessuchasthepropertiesofKrylovsubspace iterativemethods. Four PDEs are treated: the Poisson equation, steady-state versions of the convection-diffusion equation, Stokes equations, and Navier-Stokes equations. Thefirsttwoequationsareubiquitousinscientificcomputing,seeforexample Ockendonetal.[1999],Milleretal.[1995],Morton[1996]orRoosetal.[1996]. The latter two PDEs constitute the basis for computational modelling of the flowofanincompressibleNewtonianfluid. The first main feature of the package concerns problem specification and finiteelementdiscretization.Foreachoftheequationslisted,IFISSoffersachoice of two-dimensional domains on which the problem can be posed, along with boundary conditions and other aspects of the problem, and a choice of finite element discretizations on a quadrilateral element mesh. The package allows thestudyof —accuracyoffiniteelementsolutions, —differentchoicesofelements, —aposteriorierroranalysis. In addition, special features associated with individual problems can be ex- plored.Theseincludetheeffectsofboundarylayersonsolutionqualityforthe convection-diffusion equation, and the effects of discrete inf-sup stability on accuracyfortheStokesandNavier-Stokesequations. The second main feature of the package concerns iterative solution of the discrete algebraic systems, with emphasis on preconditioned Krylov subspace methodsforlinearsystemsofequations.TheKrylovsubspacemethodsarecho- sentomatcheachproblem.Forexample,thediscretePoissonequation,which ACMTransactionsonMathematicalSoftware,Vol.33,No.2,Article14,Publicationdate:June2007. Algorithm866:IFISS,AMatlabToolboxforModellingIncompressibleFlow • 3 hasasymmetricpositivedefinitecoefficientmatrix,canbetreatedbythecon- jugate gradient method (CG) [Hestenes and Stiefel 1952] whereas the discrete convection-diffusion and Navier-Stokes equations require a method such as the generalized minimum residual method (GMRES) [Saad and Schultz 1986], whichisdesignedfornonsymmetricsystems(see§3.1fordetails).Thekeyfor fastsolutionliesinthechoiceofeffectivepreconditioningstrategies.Thepack- age offers a range of options, including algebraic methods such as incomplete LUfactorizations,aswellasmoresophisticatedandstate-of-the-artmultigrid methodsdesignedtotakeadvantageofthestructureofthediscretelinearized Navier-Stokesequations.Inaddition,thereisachoiceofiterativestrategies,Pi- carditerationorNewton’smethod,forsolvingthenonlinearalgebraicsystems arisingfromthelatterproblem. AuniquefeatureoftheIFISSpackageisitscomprehensivenature,wherefor eachproblemitaddresses,itenablesthestudyofbothdiscretizationanditer- ative solution algorithms as well as the interaction between the two and the resultingeffectonsolutioncost.Itisorganizedinamodularfashion,withsep- arate program units (typically matlab functions) for individual tasks such as discretization,erroranalysis,iterativesolution,andotheraspectssuchasprob- lem definition and visualization tools grouped in separate subdirectories. The packageprovidesaconvenientstartingpointforresearchprojectsthatrequire theconstructionofnewproblemclasses,discretizationsorsolutionalgorithms. A detailed description of how new problems can be incorporated into IFISS is giveninElmanetal.[2005b]. Theremainderofthearticleisorganizedasfollows.Section2identifiesthe PDEstreated,describesthefiniteelementmethodsusedtoapproximatethem, and outlines the strategies used for a posteriori error estimation. Section 3 describestheiterativesolutionalgorithmsprovidedforthelinearsystemsthat ariseforeachofthebenchmarkproblems.Finally,Section4describessomeof thedesignfeaturesofthepackage. 2. APPROXIMATION A key feature of the IFISS package is the facility to construct various finite el- ement solutions for a range of PDE problems and to carry out a posteriori erroranalysisofthecomputeddiscretesolutions.Thetheoryoffiniteelement methodsiswellestablished(seeforexampleBraess[1997];BrennerandScott [1994]; Ciarlet [1978]; Elman et al. [2005b]; Gunzburger [1989]; and Johnson [1987]).AnoutlineofthespecificapproximationmethodsimplementedinIFISS ispresentedbelowforeachPDEinturn. 2.1 ThePoissonEquation Theproblemconsideredhereis −∇2u = f in (cid:2), (1) ∂u u= g on∂(cid:2) , =0on∂(cid:2) , D D ∂n N ACMTransactionsonMathematicalSoftware,Vol.33,No.2,Article14,Publicationdate:June2007. 4 • H.C.Elmanetal. where (cid:2) is a two-dimensional domain with boundary ∂(cid:2) consisting of two nonoverlappingsegments∂(cid:2) ∪∂(cid:2) .Thefunction f isagivensource(orload) D N functionand g isgivenDirichletboundarydata.Inaddition, (cid:5)nistheoutward- D pointing normal to the boundary and ∂u denotes the directional derivative in ∂n thenormaldirection.TheweakformulationofthePDEproblemhasasolution u in the Sobolev space H1((cid:2)) that satisfies the Dirichlet boundary condition togetherwiththeconditionthat (∇u,∇v)=(f,v) ∀v∈ V :={v∈H1((cid:2))|v=0on∂(cid:2) }, D where (·,·) denotes the L inner product on (cid:2). Given some finite-dimensional 2 subspace V ⊂ V,theassociateddiscretesolutionu satisfiesu = g on∂(cid:2) h h h D D and (∇u ,∇v )=(f ,v ) ∀v ∈ V , (2) h h h h h h where f isthe L ((cid:2))orthogonalprojectionof f into V .Forastandardfinite h 2 h elementgridwithnuinteriornodesandn∂ Dirichletboundarynodes,wechoose a set of basis functions φ , i = 1,...,n for V , and look for an approximate i u h solutionoftheform (cid:2)nu n(cid:2)u+n∂ u (x, y)= u φ (x, y)+ u φ (x, y), (3) h i i i i i=1 i=nu+1 wher(cid:3)etheboundarycoefficientsui,i =nu+1,...,nu+n∂ arechosentoensure that nu+n∂ u φ (x, y)interpolatestheboundarydata g on∂(cid:2) .Thisleads toanni=×nu+n1 siystiemoflinearequations D D u u Au=f, (4) wheretheentriesofthesolutionuaretheunknowncoefficientsu in(3). i Two standard finite element approximation methods are implemented in IFISS: —Bilinear quadrilateral Q : The isoparametrically mapped square element 1 with bilinear basis functions of the form (ax + b)(cy + d). There are four unknownsperelement. —Biquadratic quadrilateral Q : The bilinearly mapped square element with 2 biquadraticbasisfunctionsoftheform(ax2+bx+c)(dy2+ey + f).There arenineunknownsperelement,correspondingtotheterms1, x, y, x2, xy, y2, xy2, x2y and x2y2. These finite element approximations typically have a discontinuous normal derivative across interelement boundaries. Consequently, it is convenient to definethefluxjumpacrossedge E adjoiningelementsT and S as (cid:4)(cid:4) (cid:5)(cid:5) ∂v :=(∇v| −∇v| )· (cid:5)n =(∇v| −∇v| )· (cid:5)n , (5) ∂n T S E,T S T E,S where (cid:5)n is the outward normal with respect to E and ∇u · (cid:5)n is the E,T h E,T discrete (outward-pointing) normal flux. An a posteriori estimate of the dis- cretizationerrore=u−u maybecomputedfromtheequidistributedinterior h ACMTransactionsonMathematicalSoftware,Vol.33,No.2,Article14,Publicationdate:June2007. Algorithm866:IFISS,AMatlabToolboxforModellingIncompressibleFlow • 5 edgefluxjump R := 1[[∂uh]], togetherwiththeinteriorelementresidual E 2 ∂n R :={f +∇2u }| . T h T Thisisaconsequenceofthefactthattheerrorsatisfies (cid:6) (cid:7) (cid:2) (cid:2) (cid:2) (∇e,∇v) = (R ,v) − (cid:9)R ,v(cid:10) (6) T T T E E T∈Th T∈Th E∈E(T) for all v ∈ V, where E(T) is the set of edges associated with element T; (cid:9)·,·(cid:10) E denotesthe L innerproducton E;andT isthesetofallelements.SeeElman 2 h etal.[2005b,p.50]forfurtherdetails. TheIFISSsoftwarecomputesanaposteriorierrorestimatewheneverQ1 ap- proximationisused.Thisisparticularlystraightforwardtoimplement,inthat R ispiecewiselinearand R = f| canbeapproximatedbyapiecewisecon- E T T stantfunctionR0 byevaluating f attheelementcentroid.Considerthehigher T ordercorrectionspace Q = Q ⊕B , T T T sothat Q isthespacespannedbybiquadraticedgebubblesψ ,and B isthe T E T spacespannedbyinteriorbiquadraticbubblesφ .Theenergynormoftheerror T isestimatedbysolvinga5×5localPoissonproblemposedovereachelement ofthegrid1: (cid:8) (cid:9) (cid:2) (∇e ,∇v) = R0,v − (cid:9)R ,v(cid:10) ∀v∈Q . T T T T E E T E∈E(T) Oncee hasbeencomputed,thelocal,elementwise,errorestimatorisgivenby T η =(cid:12)∇e (cid:12) ,andtheglobalerrorestimatorisgivenby T T T (cid:10) (cid:11) (cid:2) 1/2 η:= η2 ≈(cid:12)∇(u−u )(cid:12). T h T∈Th This approach for error estimation was originally introduced in Bank and Weiser[1985].Itbelongstoaclassofmethodsreferredtoasimplicitestimators, seeAinsworthandOden[2000].Ananalysisofitseffectivenessasanestimator canbefoundinElmanetal.[2005b]. 2.2 TheConvection-DiffusionEquation Theequation −(cid:7)∇2u+ w(cid:5) ·∇u=0 in (cid:2), (7) (with(cid:7) >0)arisesinnumerousmodelsofflowsandotherphysicalphenomena. Inatypicalapplication,theunknownfunctionurepresentstheconcentration of a pollutant being transported (or ‘convected’) along a stream moving at ve- locity, w(cid:5) andalsosubjecttodiffusiveeffects.Theconvection-diffusionequation 1Thelocalproblemdefinitionneedstobeslightlymodifiedforthoseelementshavingoneormore edgesontheDirichletboundary∂(cid:2)D. ACMTransactionsonMathematicalSoftware,Vol.33,No.2,Article14,Publicationdate:June2007. 6 • H.C.Elmanetal. considered in IFISS is (7) posed on a two-dimensional domain (cid:2), together with theboundaryconditions ∂u u= g on∂(cid:2) , =0on∂(cid:2) . (8) D D ∂n N Wewillrefertothevelocityvector w(cid:5) asthewind. ItiswellknownthatapplyingtheGalerkinfiniteelementmethodto(7)and (8)willoftenresultinadiscretesolutionthatexhibitsnonphysicaloscillations. This unwanted effect is minimized in IFISS through use of the streamline dif- fusionmethodofHughesandBrooks[1979]:thediscreteproblemisstabilized by adding diffusion in the streamline direction. The resulting discrete formu- lation, which is the analogue of (2) for the convection-diffusion equation with discretestabilization,is (cid:2) (cid:7)(∇u ,∇v )+(w(cid:5) ·∇u ,v ) + δ (w(cid:5) ·∇u , w(cid:5) ·∇v ) =0 ∀v ∈ V , (9) h h h h k h h k h h k wherethesumistakenoverallelements inthegrid. k To implement (9), we need a way of choosing locally defined parameters δ . k OnewayofdoingthisissuggestedbytheanalysisinFischeretal.[1999]and ElmanandRamage[2002].Specifically,wechoose ⎧ (cid:15) (cid:16) ⎨ hk 1− 1 ifPk >1 δ = 2|w(cid:5)k| Phk h (10) k ⎩ 0 ifPk ≤1. h Here, |w(cid:5) | is the Euclidean norm of the wind at the element centroid, h is k k a measure of the element length in the direction of the wind,2 and Pk := h |w(cid:5) |h /(2(cid:7))istheso-calledelementPecletnumber. k k For all convection-diffusion problems solved in IFISS, the discretization is done using Q approximation on either uniform or stretched grids with sta- 1 bilization parameter (10). There is also scope for a user-defined stabilization parameter so that the effect of adding streamline diffusion can be studied in detail. Further information specific to finite element modelling of convection- diffusionproblemscanbefoundinElmanetal.[2005b],GreshoandSani[1998], Morton[1996],QuarteroniandValli[1997]andRoosetal.[1996].Theaposteri- orierrorestimationstrategybuiltintotheIFISSsoftwareisanaturalextension ofthatusedforthePoissonequation.Giventhediscretesolutionu ,theerror h e=u−u ∈ V isestimatedlocallybysolvingthe5×5localPoissonproblem h (cid:8) (cid:9) (cid:2) (cid:7)(∇e ,∇v) = R0,v −(cid:7) (cid:9)R ,v(cid:10) ∀v∈Q T T T T E E T E∈E(T) posedovereachelementofthegrid,wheretherighthandsidedataisgivenby the equidistributed interior edge flux jumps R := 1[[∂uh]], together with the E 2 ∂n piecewiseconstantinteriorresiduals R0 :={f − w(cid:5) ·∇u }| . T h T 2Onarectanglewithsidesoflengthhx,hy inwhichthewindformsanangleθ =arctan(|wy/wx|) atthecentroid,hk isgivenbymin(hx/cosθ,hy/sinθ). ACMTransactionsonMathematicalSoftware,Vol.33,No.2,Article14,Publicationdate:June2007. Algorithm866:IFISS,AMatlabToolboxforModellingIncompressibleFlow • 7 In this case, the local, elementwise, error estimator is given by η = (cid:12)∇e (cid:12) , T T T andtheglobalerrorestimatorisagaingivenby (cid:10) (cid:11) (cid:2) 1/2 (cid:17) (cid:17) η:= η2 ≈(cid:17)∇(u−u )(cid:17). T h T∈Th This approach was originally suggested by Kay and Silvester [2001] and is a simplifiedversionoftheimplicitestimatorintroducedandanalyzedinVerfu¨rth [1998]. 2.3 TheStokesEquations TheStokesequations,givenby −∇2(cid:5)u+∇p = (cid:5)0, (11) ∇· (cid:5)u = 0, (12) togetherwithboundaryconditions(analogousto(8)) (cid:5)u= w(cid:5) on∂(cid:2) , ∂(cid:5)u − (cid:5)np= (cid:5)0on∂(cid:2) , (13) D ∂n N represent a fundamental model of viscous flow. The variable (cid:5)u is a vector- valued function representing the velocity of the fluid, and the scalar function p represents the pressure. The equation (11) represents conservation of the momentum of the fluid (the momentum equation), and equation (12) enforces conservation of mass (the incompressibility constraint). The crucial modelling assumption is that the flow is ‘low speed,’ so that convection effects can be neglected. The formal aspects of finite element discretization of the Stokes equations are the same as for the Poisson equation. However, two different types of test functionareneededinthiscase,namelyvector-valuedvelocityfunctions (cid:5)v = h [v ,v ]T and scalar pressure functions q . By extending this notation to the x y h discretecaseinanobviousway,theweakformulationcanbewrittenas (∇(cid:5)u ,∇(cid:5)v )−(p ,∇· (cid:5)v ) = 0 ∀(cid:5)v ∈X , h h h h h h (q ,∇· (cid:5)u ) = 0 ∀q ∈ M , h h h h where X and M are appropriate finite dimensional subspaces of H1((cid:2)) and h h L ((cid:2)),respectively.Thefactthatthevelocityandpressurespacesareapproxi- 2 matedindependentlyleadstothenomenclature,mixedapproximation.Imple- mentationagainentailsdefiningappropriatebasesforthevelocityandpressure finiteelementspacesandconstructingtheassociatedfiniteelementcoefficient matrix (see Elman et al. [2005b, section 5.3]). In matrix form, the resulting linearsystemis (cid:4) (cid:5)(cid:4) (cid:5) (cid:4) (cid:5) A BT u f = . (14) B O p g This is a system of dimension n +n , where n and n are the numbers of u p u p velocityandpressurebasisfunctions,respectively.ThematrixAisa2×2block ACMTransactionsonMathematicalSoftware,Vol.33,No.2,Article14,Publicationdate:June2007. 8 • H.C.Elmanetal. diagonal matrix with scalar Laplacian matrices defining the diagonal blocks, andthematrix Bisann ×n rectangularmatrix. p u If(14)istoproperlyrepresentacontinuousStokesproblem,thenthefinite dimensional approximation spaces need to be chosen carefully. The theory of howtochoosebasisfunctionsappropriatelyisdealtwithbytheinf-supstability condition. We omit a discussion of this analysis; full details can be found in Brezzi and Fortin [1991], and an accessible discussion is available in Elman etal.[2005b,Section5.3.1].Twoinf-supstablemixedmethodsareimplemented inIFISS: —Q –Q .Theso-calledTaylor-HoodmethodusesQ approximationforvelocity 2 1 2 andcontinuousQ approximationforpressure. 1 —Q2–P−1. This uses Q2 approximation for velocity together with a discontin- uous linear pressure. Specifically, the P−1 element has a central node with three associated degrees of freedom, the pressure at the centroid, and its x and y derivatives. It is an unfortunate fact of life that the simplest mixed approximations, such as the case when velocities and pressures are defined on the same set of grid points, are not inf-sup stable. In such cases however, it is possible to use stabilization techniques to circumvent the inf-sup condition. Details can befoundinElmanetal.[2005b,section5.3.2].Inpractice,stabilisationofthe lowestordermethodsleadstoaStokessystemoftheform (cid:4) (cid:5)(cid:4) (cid:5) (cid:4) (cid:5) A BT u f = (15) B −βC p g forsomen ×n symmetricpositivesemidefinitematrixC andastabilization p p parameterβ >0.TwostabilizedelementpairsareimplementedinIFISS: —Q –P .Thisisthemostfamousexampleofanunstableelementpair,using 1 0 bilinear approximation for velocity and a constant approximation for the pressure. —Q –Q .Herethevelocityandpressuredegreesoffreedomaredefinedatthe 1 1 samesetofgridpoints.Thisisveryappealingfromthepointofviewofease ofprogrammingandcomputationalefficiency. StokesflowtestproblemscanbesolvedwithIFISSusinganyofthefourdis- cretizations listed above, with stabilization applied where necessary. An opti- malvalueofthestabilizationparameterisdeterminedautomatically,although the parameter value can also be changed by a user who wishes to investigate theeffectsofstabilizationonsolutionaccuracy. AnefficientstrategyforaposterioriestimationfortheStokesflowproblem canberealizedbybuildingonthePoissonerrorestimationstrategyandsolving ananalogouslocalproblemforeachvelocitycomponent.Notethatthevelocity approximationtypicallyhasadiscontinuousnormalderivativeacrossinterele- mentboundaries,soitisnaturaltogeneralizethefluxjump(5)togiveastress jumpacrossedge E adjoiningelementsT and S: [[∇(cid:5)u − p (cid:5)I]] :=((∇(cid:5)u − p (cid:5)I)| −(∇(cid:5)u − p (cid:5)I)| )(cid:5)n . h h h h T h h S E,T ACMTransactionsonMathematicalSoftware,Vol.33,No.2,Article14,Publicationdate:June2007. Algorithm866:IFISS,AMatlabToolboxforModellingIncompressibleFlow • 9 (cid:5) IfaC0pressureapproximationisused,thenthejumpin p Iiszero.Exactlyas h for the characterization (6) for the Poisson problem, the mixed approximation errorfunctions (cid:5)e:= (cid:5)u− (cid:5)u ∈Xand(cid:7) := p− p ∈ M canbeshowntosatisfya h h setoflocalizedStokesproblems: (cid:6) (cid:7) (cid:2) (cid:18) (cid:19) (cid:2) (cid:2) (∇(cid:5)e,∇(cid:5)v) −((cid:7),∇· (cid:5)v) = (R(cid:5) , (cid:5)v) − (cid:9)R(cid:5) , (cid:5)v(cid:10) T T T T E E T∈Th (cid:2) T(cid:2)∈Th E∈E(T) − (q,∇· (cid:5)e) = (R ,q) T T T T∈Th T∈Th for all ((cid:5)v,q) ∈ X × M. Here, the equidistributed stress jump is R(cid:5) := E 1[[∇(cid:5)u − p (cid:5)I]], and the elementwise interior residuals are given by R(cid:5) := 2 h h T {∇2(cid:5)u −∇p }| and R :={∇· (cid:5)u }| ,respectively. h h T T h T The IFISS software computes an estimate of the approximation error when- ever Q velocity approximation is used (that is, if either stabililized Q –P or 1 1 0 stabilizedQ –Q mixedapproximationisused).Usingthespace Q(cid:5) :=(Q )2, 1 1 T T thevelocityerrorsaregivenbysolvingapairof5×5Poissonproblems.Specif- ically, (cid:5)e ∈ Q(cid:5) iscomputedsatisfying T T (cid:2) (∇(cid:5)e ,∇(cid:5)v) =(R(cid:5) , (cid:5)v) − (cid:9)R(cid:5) , (cid:5)v(cid:10) ∀(cid:5)v∈ Q(cid:5) , (16) T T T T E E T E∈E(T) for every element in the grid. The local error estimator is given by the combi- nationofthe‘energynorm’ofthevelocityerrorandtheL normoftheelement 2 divergenceerror,thatis, η2 :=(cid:12)∇(cid:5)e (cid:12)2 +(cid:12)R (cid:12)2 . (17) T T T T T (cid:15) (cid:16) (cid:3) 1/2 Theglobalerrorestimatorisη:= η2 . T∈Th T ThismethodoferrorestimationwasintroducedbyKayandSilvester[1999], and is a modification of an approach devised by Ainsworth and Oden [1997]. Foranassessmentofitseffectiveness,seeElmanetal.[2005b,section5.4.2]. 2.4 TheNavier-StokesEquations Thesteady-stateNavier-Stokesequationscanbewrittenas −ν∇2(cid:5)u+ (cid:5)u·∇(cid:5)u+∇p = (cid:5)f, (18) ∇· (cid:5)u = 0, whereν >0isagivenconstantcalledthekinematicviscosity.Associatedbound- aryconditionsaregivenby (cid:5)u= w(cid:5) on∂(cid:2) , ν∂(cid:5)u − (cid:5)np= (cid:5)0on∂(cid:2) . (19) D ∂n N This system is the basis for computational modelling of the flow of an incom- pressible Newtonian fluid such as air or water. The presence of the nonlinear convection term (cid:5)u·∇(cid:5)u means that boundary value problems associated with theNavier-Stokesequationscanhavemorethanonesolution. ACMTransactionsonMathematicalSoftware,Vol.33,No.2,Article14,Publicationdate:June2007.

Description:
Algorithm 866: IFISS, A Matlab Toolbox for. Modelling Incompressible Flow. HOWARD C. ELMAN. University of Maryland. ALISON RAMAGE. University of Strathclyde and. DAVID J. SILVESTER. University of Manchester. IFISS is a graphical Matlab package for the interactive numerical study of
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.