Advanced Solutions in Power Systems HVDC, FACTS, and Artificial Intelligence Edited by MIRCEA EREMIA CHEN-CHING LIU ABDEL-ATY EDRIS ADVANCED SOLUTIONS IN POWER SYSTEMS IEEEPress 445HoesLane Piscataway,NJ08854 IEEEPressEditorialBoard TariqSamad,EditorinChief GeorgeW.Arnold XiaoouLi RayPerez GiancarloFortino VladimirLumelsky LindaShafer DmitryGoldgof Pui-InMak ZidongWang EkramHossain JeffreyNanzer MengChuZhou KennethMoore,DirectorofIEEEBookandInformationServices(BIS) ADVANCED SOLUTIONS IN POWER SYSTEMS HVDC, FACTS, and Artificial Intelligence Edited by MIRCEA EREMIA CHEN-CHING LIU ABDEL-ATY EDRIS Copyright©2016byTheInstituteofElectricalandElectronicsEngineers,Inc. PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey.Allrightsreserved PublishedsimultaneouslyinCanada Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformor byanymeans,electronic,mechanical,photocopying,recording,scanning,orotherwise,exceptas permittedunderSection107or108ofthe1976UnitedStatesCopyrightAct,withouteithertheprior writtenpermissionofthePublisher,orauthorizationthroughpaymentoftheappropriateper-copyfeeto theCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers,MA01923,(978)750-8400,fax (978)750-4470,oronthewebatwww.copyright.com.RequeststothePublisherforpermissionshould beaddressedtothePermissionsDepartment,JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ 07030,(201)748-6011,fax(201)748-6008,oronlineathttp://www.wiley.com/go/permission. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsin preparingthisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyor completenessofthecontentsofthisbookandspecificallydisclaimanyimpliedwarrantiesof merchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysales representativesorwrittensalesmaterials.Theadviceandstrategiescontainedhereinmaynotbesuitable foryoursituation.Youshouldconsultwithaprofessionalwhereappropriate.Neitherthepublishernor authorshallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnotlimitedto special,incidental,consequential,orotherdamages. Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontactour CustomerCareDepartmentwithintheUnitedStatesat(800)762-2974,outsidetheUnitedStatesat (317)572-3993orfax(317)572-4002. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmay notbeavailableinelectronicformats.FormoreinformationaboutWileyproducts,visitourwebsiteat www.wiley.com. LibraryofCongressCataloging-in-PublicationDataisavailable. ISBN:978-1-119-03569-5 PrintedintheUnitedStatesofAmerica 10 9 8 7 6 5 4 3 2 1 CONTENTS CONTRIBUTORS xxi FOREWORD xxiii ACKNOWLEDGMENTS xxv CHAPTER1 INTRODUCTION 1 MirceaEremia,Chen-ChingLiu,andAbdel-AtyEdris PART I HVDCTRANSMISSION MirceaEremia CHAPTER2 POWERSEMICONDUCTORDEVICESFORHVDCAND FACTSSYSTEMS 11 RemusTeodorescuandMirceaEremia 2.1 PowerSemiconductorOverview 12 2.1.1 Not-ControllablePowerSemiconductorDevices 13 2.1.2 SemicontrollablePowerSemiconductorDevices 13 2.1.3 FullyControllablePowerSemiconductorDevices 17 2.1.3.1 GateTurn-OffThyristor 18 2.1.3.2 IntegratedGate-CommutatedThyristor 18 2.1.3.3 IsolatedGateBipolarTransistor 18 2.1.4 PowerSemiconductorParameters 20 2.1.4.1 Steady-StateParameters 20 2.1.4.2 SwitchingCharacteristics 20 2.1.5 FuturePowerSemiconductorDevices 21 2.2 ConverterTypes 21 2.3 HVDCEvolution 23 2.3.1 Line-CommutatedHVDCConverters(LCC/CSC–HVDC) 24 2.3.2 Capacitor-CommutatedConverter(CCC–HVDC) 26 2.3.3 VoltageSourceConverterVSC–HVDC 28 2.3.3.1 VSC–HVDCBasedonTwo-LevelConverters 29 2.3.3.2 VSC–HVDCBasedonMultilevelConverters 29 2.3.3.3 LimitationsofVSCTransmission 30 2.4 FACTSEvolution 30 References 33 v vi CONTENTS CHAPTER3 CSC–HVDCTRANSMISSION 35 MirceaEremiaandConstantinBulac 3.1 StructureandConfigurations 35 3.1.1 StructureofHVDCLinks 35 3.1.2 HVDCConfigurations 40 3.2 ConverterBridgeModeling 47 3.2.1 RectifierEquations 47 3.2.1.1 IdealConverterBridgeOperation 47 3.2.1.2 CommutationProcessorOverlap 52 3.2.1.3 EquivalentCircuitoftheRectifier 56 3.2.2 InverterEquations 57 3.3 ControlofCSC–HVDCTransmission 59 3.3.1 EquivalentCircuitandControlCharacteristics 59 3.3.1.1 EquivalentCircuitofDCTransmissionLink 59 3.3.1.2 Voltage–CurrentCharacteristics 62 3.3.2 HVDCControlPrinciples 64 3.3.2.1 StateVariablesofaHVDCLink 64 3.3.2.2 BasicControlPrinciplesoftheDCVoltageandDCCurrent 65 3.3.2.3 ControlModes 67 3.3.3 HVDCControlStrategies 69 3.3.3.1 RectifierControlStrategy 69 3.3.3.2 InverterControlStrategy 71 3.3.4 HierarchicalControlofaHVDCLink 72 3.3.4.1 MasterControl 72 3.3.4.2 PoleControl 74 3.3.4.3 Firing(Valve)Control 78 3.3.4.4 Telecommunications 78 3.3.4.5 MeasurementTransducers 78 3.4 ReactivePowerandHarmonics 78 3.4.1 ReactivePowerRequirementsandSources 78 3.4.2 HarmonicsandFilters 83 3.4.2.1 TheSourceofACHarmonicCurrents 83 3.4.2.2 TheEffectofY∕ΔTransformationonACHarmonicCurrent 85 3.4.2.3 HigherPulseOperationUsingMultipleBridges andTransformers 86 3.4.2.4 EliminationofHarmonics 86 3.5 LoadFlowinMixedHVAC/HVDC-CSCSystems 91 3.5.1 Steady-StateModel 91 3.5.1.1 TheExtendedVariablesMethod 93 3.5.1.2 TheSequentialMethod 94 3.5.1.3 TheEliminatedVariablesMethod 94 3.6 InteractionBetweenACandDCSystems 96 3.6.1 ACSystemsStabilization 96 3.6.2 InfluenceofACSystemShort-CircuitRatio 96 3.6.3 EffectiveInertiaConstant 99 3.6.4 ReactivePowerandtheStrengthoftheACSystem 100 3.7 ComparisonBetweenDCandACTransmission 101 3.8 ApplicationonaCSC–HVDCLink 109 3.8.1 Solution 111 CONTENTS vii Appendix3.1 CSC–HVDCSystemsintheWorld 118 References 123 CHAPTER4 VSC–HVDCTRANSMISSION 125 MirceaEremia,Jose´AntonioJardini,GuangfuTang,andLucianToma 4.1 VSCConverterStructures 126 4.1.1 Half-BridgeVSCorTwo-LevelPole 126 4.1.2 Full-BridgeSingle-PhaseVSC 128 4.1.3 Three-PhaseTwo-LevelVSC 128 4.1.4 Three-LevelPoleVSC 129 4.1.5 MultimoduleVSCSystems 131 4.1.6 MultilevelVSCSystems 132 4.1.7 ModularMultilevelConverter 138 4.1.7.1 Half-BridgeModularMultilevelConverter 140 4.1.7.2 Full-BridgeModularMultilevelConverter 143 4.1.7.3 TheMMC–HVDCINELFEProject 144 4.1.8 CascadedTwo-LevelConverters 147 4.2 ModulationTechniques 151 4.2.1 PWMTechniques 151 4.2.1.1 PWMPrinciple 151 4.2.1.2 PWMStrategyControlofaHalf-BridgeConverter 155 4.2.1.3 Three-PhaseBridgeInverterwithSinusoidalPWM 159 4.2.2 ModulationTechniquesforMultilevelConverters 163 4.2.2.1 PWMAlgorithmsforMultilevelConverters 163 4.2.2.2 SpaceVectorModulationAlgorithms 165 4.2.2.3 OtherModulationandControlAlgorithmsforMultilevel Converters 165 4.3 DC/ACConverterAnalysis 166 4.3.1 OperationModesoftheSwitched-InductorCell 166 4.3.2 IdealDC/ACHalf-BridgeConverter 168 4.3.3 AveragingModels 175 4.3.3.1 Circuit/SwitchAveragingofDC–DCConverters 176 4.3.3.2 State-SpaceAveragingofDC–DCConverters 177 4.3.3.3 AVMofDC–ACConverters 178 4.3.4 DetailedandAveragedModelsforMMC–HVDCSystems 180 4.3.4.1 DetailedEquivalentModels 181 4.3.4.2 AVMofMMC–HVDCUsingVoltage-and Current-ControlledSources 183 4.4 VSCTransmissionSchemeandOperation 188 4.4.1 PowerEquipment 188 4.4.2 PrinciplesofActiveandReactivePowerControl 192 4.4.3 VSCTransmissionControl 196 4.4.3.1 VSCConverterControlUsingtheVectorControlStrategy 196 4.4.3.2 LevelsofControl 199 4.4.3.3 CoordinationofControls 200 4.5 MultiterminalVSC–HVDCSystemsandHVDCGrids 203 4.5.1 OntheConventionalMultiterminalHVDCConfigurations 203 4.5.2 MultiterminalHVDCGridConfigurations 204 4.5.3 MeshedHVDCGridConfigurations 209 viii CONTENTS 4.5.4 NeedforFastandLowLossHVDCBreakers 211 4.5.4.1 Preconditions 211 4.5.4.2 SchemesfortheCurrentZeroFormation 212 4.5.4.3 TypesofDCCircuitBreakers 214 4.5.5 HVDCGridProtection 218 4.6 LoadFlowandStabilityAnalysis 221 4.6.1 LoadFlowinMeshedAC/DCGrids 221 4.6.1.1 Generalities 221 4.6.1.2 LoadFlowCalculationinaDCGrid 223 4.6.1.3 Application 227 4.6.2 DynamicStabilityinMeshedAC/DCGrids 231 4.6.2.1 Generalities 231 4.6.2.2 DescriptionoftheVSCModelforStabilityAnalysis 233 4.6.2.3 ControlModels 235 4.6.2.4 P–VDroopControl 237 4.6.2.5 CurrentandVoltageLimits 237 4.6.2.6 RMSModelTesting 238 4.6.2.7 SimulationsonanAC/DCMeshedGrid 239 4.7 ComparisonofCSC–HVDCVersusVSC–HVDCTransmission 246 4.7.1 DifferencesResultingfromtheCommutationPrinciple 246 4.7.2 DifferencesResultingfromtheConverterType 248 4.8 ForwardtoSupergrid 249 4.8.1 ChallengesandSolutionsforDevelopingSupergrid 249 4.8.1.1 ConnectingRenewableEnergySourcesandIncreased TransmissionSystemCapacity 250 4.8.1.2 CompensatingReactivePower 250 4.8.1.3 MaintainingSystemStability 252 4.8.2 HybridACandDCSystems 252 4.8.3 Supernodes 254 4.8.4 StepwiseDevelopmentoftheEuropeanSupergrid 255 4.8.5 StepsTowardaPlanetarySupergrid 258 4.8.6 VSCMultiterminalinChina 260 Appendix4.1VSC–HVDCProjectsAroundtheWorld 261 Appendix4.2ExamplesofVSC–HVDCOne-LineDiagrams 263 References 263 PART II FACTSTECHNOLOGIES Abdel-AtyEdrisandMirceaEremia CHAPTER5 STATICVArCOMPENSATOR(SVC) 271 MirceaEremia,AniruddhaGole,andLucianToma 5.1 Generalities 271 5.2 Thyristor-ControlledReactor 273 5.3 Thyristor-SwitchedCapacitor 284 5.4 ConfigurationsofSVC 287 5.4.1 FixedCapacitorandThyristor-ControlledReactor 287 5.4.2 TheSVCDevice(TSC–TCR) 289 5.4.2.1 V–ICharacteristics 289 5.4.2.2 OperatingDomain 290
Description: