IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES A PUBLICATION OF THE IEEE MICROWAVE THEORY AND TECHNIQUES SOCIETY FEBRUARY 2004 VOLUME 52 NUMBER 2 IETMAB (ISSN 0018-9480) PAPERS A 14-GHz 256/257 Dual-Modulus Prcscalcr With Secondary Feedback and Ils Application Lo a Monolithic CMOS I 0.4-GHz Phase-Locked Loop .............................................. D. -1. Yang and K. K. 0 461 Elcclromagnclic 3-D Model for Active Linear Devices: Application Lo pHEMTs in the Linear Regime ...... . . .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Farina, L. Pierantoni, and T Rozzi 469 Novel Broad-Band Bit-Synchronization Circuit Module for Optical lnLcrconnccLions ............ . .... K. Onodera 475 Measurements of V-Band n-Typc InSb Junction Circulalors .................. Z. M. Ng, L. E. Davis, and R. Sloan 482 An RF Electronically Controlled Impedance Tuning Network Design and Its Application to an Antenna Input Impedance Automatic Matching System ................. J. de Mingo, A. Valdovinos, A. Crespo, D. Navarro, and P Carda 489 Multiplexing of Millimeter-Wave Signals for Fiber-Radio Links by Direct Modulation of a Two-Mode Locked Fabry-Perot Laser. . .... . ..... .. ..... .. ..... .......... .. ..... ... M. Ogusu, K. Jnagaki, Y Mizuguchi, and T Ohira 498 Efficient Elcclromagnclic Optimization of Microwave Fillers and Multiplexers Using Rational Models .. . ...... . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Garcfa-Lamperez, S. Llorente-Romano, M. Salazar-Palma, and T K. Sarkar 508 Effect of Reflections on Nonstationary Gyrotron Oscillations .......................... M. 1. Airila and P Kall 522 High-Efficiency W-Band GaAs Monolithic Frequency Multipliers ............ Y. Lee, J. R. East, and L. PB. Katehi 529 Temperature Dependence of Permillivily and Loss Tangent of Lithium Tantalalc al Microwave Frequencies ......... . . . . . . . . . . . . . . . . . . . . . . . . . . . M. V. Jacob, J. G. Hartnett, J. Mazierska, V. Giordano, J. Krupka, and M. E. Tobar 536 Study of Eigcnmodcs in Periodic Waveguides Using the Lorentz Reciprocity Theorem .... D. Pissoort and F Olyslager 542 An Adjoint Variable Method for Time-Domain Transmission-Line Modeling With Fixed Structured Grids .......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. H. Bakr and N. K. Nikolova 554 Enhanced QMM-BEM Solver for Three-Dimensional Multiple-Dielectric Capacitance Extraction Within the Finite Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W Yu and Z. Wang 560 A Two-Dimensional Quasi-Optical Power Combining Oscillator Array With External Injection Locking ........... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T Magath, M. Hoff, and R. Judaschke 567 A Fast Hybrid Field-Circuit Simulator for Transient Analysis of Microwave Circuits ............... . ...... . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Aygiin, B. C. Fischer, J. Meng, B. Shanker, and E. Michielssen 573 A Coaxial-to-Microstrip Transition for Multilayer Substrates .................... S. A. Wartenberg and Q. H. Liu 584 An Adjoint Variable Method for Sensitivity Calculations of Multiport Devices .............................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. A. Soliman, M. H. Bakr, and N. K. Nikolova 589 Distributed 2-and 3-Bil W-Band MEMS Phase Shifters on Glass Substrates .. .J.-1. Hung, L. Dussopt, and G. M. Rebeiz 600 Direct Synthesis of a New Class of Bandstop Fillers .............................. S. Amari and U. Rosenberg 607 (Contents Continued on Back Cover) +IEEE FEBRUARY2004 VOLUME52 NUMBER2 IETMAB (ISSN0018-9480) PAPERS A 14-GHz 256/257 Dual-Modulus Prescaler With Secondary Feedback and Its Application to a Monolithic CMOS 10.4-GHzPhase-LockedLoop . ... ... ... ... ... ... .... ...... ... ... ... ... ... ... .. D.-J.YangandK.K.O 461 Electromagnetic3-DModelforActiveLinearDevices:ApplicationtopHEMTsintheLinearRegime ... ... ... .... .. ... ... .... ... ... ... ... ... ... ... ... ... ... ... .... ... ... ... M.Farina,L.Pierantoni,andT.Rozzi 469 NovelBroad-BandBit-SynchronizationCircuitModuleforOpticalInterconnections. ... ... ...... ... ... . K.Onodera 475 Measurementsof -Bandn-TypeInSbJunctionCirculators... .... ..... .... ... .. Z.M.Ng,L.E.Davis,andR.Sloan 482 AnRFElectronicallyControlledImpedanceTuningNetworkDesignandItsApplicationtoanAntennaInputImpedance AutomaticMatchingSystem... ... ..... .... ... .. J.deMingo,A.Valdovinos,A.Crespo,D.Navarro,andP.García 489 MultiplexingofMillimeter-WaveSignalsforFiber-RadioLinksbyDirectModulationofaTwo-ModeLockedFabry–Pérot Laser. ... .... ... ... ... ... .... ..... ... ... ... ... ... .... .M.Ogusu,K.Inagaki,Y.Mizuguchi,andT.Ohira 498 EfficientElectromagneticOptimizationofMicrowaveFiltersandMultiplexersUsingRationalModels... ... ... .... .. ... ... .... ... ... ... ... ... ..A.García-Lampérez,S.Llorente-Romano,M.Salazar-Palma,andT.K.Sarkar 508 EffectofReflectionsonNonstationaryGyrotronOscillations .. .... ... ... ...... ... ... ... .. M.I.AirilaandP.Kåll 522 High-Efficiency -BandGaAsMonolithicFrequencyMultipliers .. ... ...... ... . Y.Lee,J.R.East,andL.P.B.Katehi 529 TemperatureDependenceofPermittivityandLossTangentofLithiumTantalateatMicrowaveFrequencies. .. ... .... .. ... ... .... ... ... ... ... ..M.V.Jacob,J.G.Hartnett,J.Mazierska,V.Giordano,J.Krupka,andM.E.Tobar 536 StudyofEigenmodesinPeriodicWaveguidesUsingtheLorentzReciprocityTheorem..... .. D.PissoortandF.Olyslager 542 AnAdjointVariableMethodforTime-DomainTransmission-LineModelingWithFixedStructuredGrids. ... ... .... .. ... ... .... ... ... ... ... ... ... ... ... ... ... ... .... ... ... ... ... .. M.H.BakrandN.K.Nikolova 554 Enhanced QMM-BEM Solver for Three-Dimensional Multiple-Dielectric Capacitance Extraction Within the Finite Domain.. .... ... ... ... ... ... ... ... ... .... ..... ... .... ... ... ... ... ... ... ... .. W.YuandZ.Wang 560 ATwo-DimensionalQuasi-OpticalPowerCombiningOscillatorArrayWithExternalInjectionLocking.. ... ... .... .. ... ... .... ... ... ... ... ... ... ... ... ... ... ... .... ... ... ... T.Magath,M.Höft,andR.Judaschke 567 AFastHybridField-CircuitSimulatorforTransientAnalysisofMicrowaveCircuits . ... ... ... ... ... ... ... .... .. ... ... .... ... ... ... ... ... ... ... ... ...K.Aygün,B.C.Fischer,J.Meng,B.Shanker,andE.Michielssen 573 ACoaxial-to-MicrostripTransitionforMultilayerSubstrates .. .... .... ..... ... ... .. S.A.WartenbergandQ.H.Liu 584 AnAdjointVariableMethodforSensitivityCalculationsofMultiportDevices... ... ... ... ... ... ... ... ... .... .. ... ... .... ... ... ... ... ... ... ... ... ... ... ... .... ... E.A.Soliman,M.H.Bakr,andN.K.Nikolova 589 Distributed2-and3-Bit -BandMEMSPhaseShiftersonGlassSubstrates .. ....J.-J.Hung,L.Dussopt,andG.M.Rebeiz 600 DirectSynthesisofaNewClassofBandstopFilters. .. ... ... .... ..... .... ... ... ... .. S.AmariandU.Rosenberg 607 (ContentsContinuedonBackCover) (ContentsContinuedfromFrontCover) Harmonic-SuppressionLTCCFilterWiththeStep-ImpedanceQuarter-WavelengthOpenStub ... ..... .... ..C.-W.Tang 617 Broad-BandThree-PortandFour-PortStriplineFerriteCoupledLineCirculators. .... ..... . C.K.QueckandL.E.Davis 625 A -BandPowerAmplifierBasedontheTraveling-WavePower-Dividing/CombiningSlotted-WaveguideCircuit. ... .. ... ... .... ... ... ... ... ... ... ... ... ... ... ... .... ... ... .. X.Jiang,S.C.Ortiz,andA.Mortazawi 633 EmployingaGroundModeltoAccuratelyCharacterizeElectronicDevicesMeasuredWithGSGProbes.. ... ... .... .. ... ... .... ... ... ... ... ... ... ... ... ... ... ... .... ... ... T.Jamneala,P.D.Bradley,andD.A.Feld 640 ToroidalInductorsforRadio-FrequencyIntegratedCircuits ... .... ... ... ... ... ... ... ... ... ... ... ... .... .. ... ... .... ... ... ... .. W.Y.Liu,J.Suryanarayanan,J.Nath,S.Mohammadi,L.P.B.Katehi,andM.B.Steer 646 OptimumDesignofaPredistortionRFPowerAmplifierforMulticarrierWCDMAApplications . ... ... ... ... .... .. ... ... .... ... ... ... ... ... ... ... ... ... ... ... .... ... ... ... ... ..J.Cha,J.Yi,J.Kim,andB.Kim 655 ANovelLow-CostBeam-SteeringTechniqueBasedontheExtended-ResonancePower-DividingMethod ... ... .... .. ... ... .... ... ... ... ... ... ... ... ... ... ... ... .... ... ... ... ... ... .A.TombakandA.Mortazawi 664 Description of Coupling Between Degenerate Modes of a Dual-Mode Microstrip Loop Resonator Using a Novel PerturbationArrangementandItsDual-ModeBandpassFilterApplications... ... ... .... ..... ... ... ... A.Görür 671 AnAdjointVariableMethodforTime-DomainTLMWithWide-BandJohnsMatrixBoundaries.. ... ... ... ... .... .. ... ... .... ... ... ... ... ... ... ... ... ... ... ... .... ... ... ... ... .. M.H.BakrandN.K.Nikolova 678 Designofa42-GHz200-kWGyrotronOperatingattheSecondHarmonic... ... ... ... ... ... ... ... ... ... .... .. ... ... .... ... ... ... ... ... ... ..M.V.Kartikeyan,E.Borie,O.Drumm,S.Illy,B.Piosczyk,andM.Thumm 686 MEMS2-BitPhase-ShifterFailureModeandReliabilityConsiderationsforLarge -BandArrays. .. ... ... ... .... .. ... ... .... ... ... ... ... ... ... ... ... ... ... ... .... ... ... ... ... ... J.G.Teti,Jr.andF.P.Darreff 693 Low-CostBiCMOSVariableGainLNAat -BandWithUltra-LowPowerConsumption..... ..F.EllingerandH.Jäckel 702 EnhancedImplementationoftheComplexImagesMethodtoStudyBoundandLeakyRegimesinLayeredPlanarPrinted Lines. ... .... ... ... ... ... ... ...... ... ... ... ... ... .... ... . R.Rodríguez-Berral,F.Mesa,andF.Medina 709 NewBuildingBlocksforModularDesignofEllipticandSelf-EqualizedFilters.. .... ..... .. S.AmariandU.Rosenberg 721 InformationforAuthors.. ... ... ... ... ... ... ... ... ... .... ...... ... ... ... ... ... ... ... ... ... ... .... 737 CALLSFORPAPERS SpecialIssueonMetamaterialStructures,Phenomena,andApplications. ... ... ... ... ... ...... ... ... ... ... .... 738 SpecialIssueonMultifunctionalRFSystems.. ... ... ... ... .... ... ... .... ..... ... ... ... ... ... ... ... .... 739 2004IEEECompoundSemiconductorICSymposium . ... ... .... ... ... ... .... ..... ... ... ... ... ... ... .... 740 IEEEMICROWAVETHEORYANDTECHNIQUESSOCIETY TheMicrowaveTheoryandTechniquesSocietyisanorganization,withintheframeworkoftheIEEE,ofmemberswithprincipalprofessionalinterestsinthefieldofmicrowavetheoryandtechniques.Allmembers oftheIEEEareeligibleformembershipintheSocietyandwillreceivethisTRANSACTIONSuponpaymentoftheannualSocietymembershipfeeof$14.00plusanannualsubscriptionfeeof$24.00.Forinformation onjoining,writetotheIEEEattheaddressbelow.MembercopiesofTransactions/Journalsareforpersonaluseonly. ADMINISTRATIVE COMMITTEE R.J.TREW,President K.C.GUPTA,VicePresident A.MORTEZAWI,Secretary M.HARRIS,Treasurer M. P. DE LISO M. HARRIS L. KATEHI N. KOLIAS V. J. NAIR R.SORRENTINO S.WETENKAMP S. M. EL-GHAZALY D. HARVEY S.KAWASAKI D. LOVELACE B. PERLMAN R. J. TREW R.WIEGEL K.C.GUPTA J.HAUSNER J.S.KENNEY J.MODELSKI W.SHIROMA K.VARIAN HonoraryLifeMembers DistinguishedLecturers PastPresidents S.B.COHN A.A.OLINER K. TOMIYASU F. ALI W. GWAREK C.SCHAFFER F.SCHINDLER(2003) T.ITOH T.S.SAAD L.YOUNG P. ASBECK W.HEINRICH A. J. SEEDS J.T.BARRIV(2002) L. DAVIS A. KATZ R. TREW C.M.JACKSON(2001) H.J.DELOSSANTOS G.REBEIZ R.WEIGEL MTT-S Chapter Chairs Albuquerque: G.WOOD Foothill: C.ANTONIAK Nizhny: Y.BELOV SouthAfrica: J.JOUBERT Atlanta: J.KEMP France: O.PICCON NorthItaly: G.GHIONE SouthAustralia: B.BATES Austria: R.WEIGEL Germany: W.HEINRICH NorthQueensland: J.MAZIERSKA SouthBrazil: L.KRETLEY Baltimore: B.MCCARTHY Greece: I.XANTHAKIS NorthernNevada: B.RAWAT SoutheasternMichigan:L.M.ANNEBERG Beijing: Y.-R.ZHONG HongKong: L.K.MAN Novosibirsk: V.SHUVALOV Spain: L.DE-HARO DBBBBCCCCCCCCCDDeeuueeehloorzeaaeDTolnnnnenlyflillvalgclufa.cetttvt.aearerrraatomhlCegusaaailJlugrn/aor:aOeslllibOSxo:::an::&NuIHS::lS:doosTNPte:wv:KAaJAS.MSwSaBR.tFaSoWO..i.kB/o....uMECNMBCTinRFItNaAKnN.hEOe.::IA.RgAOLCRdSITZITLGSlIOUaZLta.YPAO.aKrOLINWnOCSlLBLRMRyUd.VHLEIHIA:/CBMLaAELEBEIp-ITANVDN,AIoiTCREAdJsZEHRRst.Ao:.ASTnRLI:BSKERIIO HHHIIJKKLLLMMMMMMNnsaiooouuriiadptaeioooetansnhlunnciallhnsvweagabjusgthAncat:lis:ytoaara:eon:wIovnesunurnswgniiaygklkirelYa:Kal:a:nl:eAZer::e.Vn:Jl-ee..:e.WdP.:a:WSsKVMT/WlODK:NIal....eY.MPtACR..GIAeByeXLNOLGWDwrH.T.:A.E.L.lAJVBB.HAoHRKIAZUYIALoKORAOCDERAHAoM:OEIDETRI.NArLOELSSGNkPOSNNFI:.RAEOSOGOSROH.NRVNAMMIADNTKAA.AHNZRZSAIONUCRZOR OOOPPPPPQRRRSSSSShhooraaaaaeiorrtuiotiinnneliolrpnceannalatgteuhaeucdwDFnnttaondnebegeddPeLanCiitseslaerox:o:eiJot:llnllcge:ap:atn:auearonnh/ori:rnMCJ:asdeTisf.daTB::Ji:be..Gr:o.R.n.uFoRMU:FWetOr.K:DJUMrgoR.YPJ.aRI:UT.rE.DMlSOSO.gTJMILJ.BALRZHi.AeaAMSOOERNAANIr:WAWsWFCL..eLOIKBISSyWKRFRKE:IETOAT.DIRWNLZGPIASKM.KROPAIIVADNALZNEENA SSSSTTTTTTTUVVVVaoowpwwyuuheiii.cnriKmrnrrcrapigeiotiaknsnieton.deisclzneoi:znargikteueCytnu:isinonf:rasa:y:eiild::e:AteaaliM::alCne:.DdL:Asdo.RJR:A:-..:V.E.uS.PE.GGJAn.K...AZMOSMtOVUAJML.AWa.HB.LRNIiIZUR.ACHTAnVHOOEAVJ.CN:AN.ELLDEA.DBHKRCRSSIGSENESIHISDEAHAOLEAIN.SWLNLNIMCBNROHAOGIVILRNLTSEHKRI EastUkraine: A.KIRILENKO NewHampshire: D.RYAN Saratov-Penza: M.V.DAVIDOVICH WashingtonDC/NorthernVirginia:R.SUTTON Egypt: I.SALEM NewJersey: K.DIXIT Seattle: T.RASCHKO WestUkraine: M.ANDRIKYCHUK Finland: T.KARTTAAVI NewJerseyCoast: S.PRASANNA Seoul: S.-W.YUN Winnipeg: J.LOVETRI FloridaWestCoast: S.O’BRIEN NewSouthWales: G.TOWN Singapore: O.B.LEONG Yugoslavia: A.MARINCIC AssociateEditors Editor MICHAEL STEER WOLFGANG MENZEL ANTTIRAISANEN BUMMAN KIM DYLANF.WILLIAMS RANDYLEHMANN NorthCarolinaStateUniv. Univ. of Ulm Helsinki Univ. PohangUniv.Sci.Technol. NIST TriQuintSemiconductor Raleigh,NC27695-7911USA Germany of Technol. Korea USA USA Phone:+19195155191 email:[email protected] Finland email:[email protected] email:[email protected] email:[email protected] Fax:+19195131979 email:[email protected] email:[email protected] M.GUPTA,Editor,IEEEMicrowaveMagazine R.VAHLDIECK,Editor,IEEEMicrowaveandComponentLetters J.LIN,Webmaster THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC. Officers ARTHUR W. WINSTON, President MICHAELR.LIGHTNER,VicePresident,PublicationServicesandProducts W. CLEON ANDERSON, President-Elect MARCT.APTER,VicePresident,RegionalActivities MOHAMED EL-HAWARY, Secretary JAMEST.CARLO,President,IEEEStandardsAssociation PEDRO A. RAY, Treasurer RALPHW.WYNDRUM,JR.,VicePresident,TechnicalActivities MICHAEL S. ADLER, Past President JOHNW.STEADMAN,President,IEEE-USA JAMESM.TIEN,VicePresident,EducationalActivities HAROLDL.FLESCHER,Director,DivisionIV—ElectromagneticsandRadiation Executive Staff DANIELJ.SENESE,ExecutiveDirector DONALD CURTIS, Human Resources MATTHEWLOEB,CorporateStrategy&Communications ANTHONY DURNIAK, Publications Activities RICHARD D. SCHWARTZ, Business Administration JUDITH GORMAN, Standards Activities W. THOMAS SUTTLE, IEEE-USA CECELIA JANKOWSKI, Regional Activities MARY WARD-CALLAN, Technical Activities BARBARACOBURNSTOLER,EducationalActivities IEEE Periodicals Transactions/Journals Department Staff Director: FRAN ZAPPULLA Editorial Director: DAWN MELLEY Production Director: ROBERT SMREK Managing Editor: MONA MITTRA SeniorEditor:CHRISTINAM.REZES IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES(ISSN0018-9480)ispublishedmonthlybytheInstituteofElectricalandElectronicsEngineers,Inc.Responsibilityforthecontentsrestsuponthe authorsandnotupontheIEEE,theSociety/Council,oritsmembers.IEEECorporateOffice:3ParkAvenue,17thFloor,NewYork,NY10016-5997.IEEEOperationsCenter:445HoesLane,P.O.Box1331, Piscataway,NJ08855-1331.NJTelephone:+17329810060.Price/PublicationInformation:Individualcopies:IEEEMembers$20.00(firstcopyonly),nonmember$49.00percopy.(Note:Postageandhandling chargenotincluded.)Memberandnonmembersubscriptionpricesavailableuponrequest.Availableinmicroficheandmicrofilm.CopyrightandReprintPermissions:Abstractingispermittedwithcredittothe source.Librariesarepermittedtophotocopyforprivateuseofpatrons,providedtheper-copyfeeindicatedinthecodeatthebottomofthefirstpageispaidthroughtheCopyrightClearanceCenter,222Rosewood Drive,Danvers,MA01923.Forallothercopying,reprint,orrepublicationpermission,writetoCopyrightsandPermissionsDepartment,IEEEPublicationsAdministration,445HoesLane,P.O.Box1331,Piscataway, NJ08855-1331.Copyright©2004byTheInstituteofElectricalandElectronicsEngineers,Inc.Allrightsreserved.PeriodicalsPostagePaidatNewYork,NYandatadditionalmailingoffices.Postmaster:Send addresschangestoIEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,IEEE,445HoesLane,P.O.Box1331,Piscataway,NJ08855-1331.GSTRegistrationNo.125634188.PrintedinU.S.A. DigitalObjectIdentifier10.1109/TMTT.2004.824201 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.52,NO.2,FEBRUARY2004 461 A 14-GHz 256/257 Dual-Modulus Prescaler With Secondary Feedback and Its Application to a Monolithic CMOS 10.4-GHz Phase-Locked Loop Dong-Jun Yang and Kenneth K. O Abstract—A14-GHz256/257dual-modulusprescalerisimple- [1]–[3] and a CMOS amplifier operating at 7–25 GHz [4]–[6] mentedusingsecondaryfeedbackinthesynchronous4/5divider havebeenreported.Forphase-lockedloops(PLLs)usinglower ona0.18- mfoundryCMOSprocess.Thedual-modulusscheme costtechnologies,onlyonesusinganSiGeBiCMOStechnology utilizes a 4/5 synchronous counter which adopts an traditional havebeenreported[7],[8].Themostdifficultchallengeforin- MOS current mode logic clocked D flip-flop. The secondary feedbackpathslimitsignalswingtoachievehigh-speedoperation. creasingtheoperatingfrequencyofaPLLatagiventechnology The maximum operating frequency of the prescaler is 14 GHz nodeistherealizationofadual-modulusprescalerwithasuffi- at DD = 18V.Utilizingtheprescaler,a10.4-GHzmonolithic cientmaximumoperatingfrequency.Toincreasetheoperating phase-lockedloop(PLL)isdemonstrated.Thevoltage-controlled frequency of dual-modulus prescalers, a new divider architec- oscillator (VCO) operates between 9.7–10.4 GHz. The tuning ture employing additional feedback is proposed and demon- range of the VCO is 690 MHz. The phase noise of the PLL and VCO at a 3-MHz offset with vco = 49 mA is 117 and strated. The dual-modulus prescaler fabricated in a 0.18- m 119 dBc Hz, respectively. At the current consumption of CMOSprocessoperatesatupto14GHz,whichisthehighest vco = 81 mA, the phase noise is 122 and 122 dBc Hz, operating frequency among CMOS dual-modulus prescalers. respectively. The PLL output phase noise at a 50-kHz offset is Usingthisprescaler,thefirstCMOSPLLwhichoperatesabove 80dBc Hz.ThePLLconsumes 31mAat DD =18V. 10GHz[9]isreported.ThePLLintegratesaVCO,aloopfilter, Index Terms—Dual modulus prescaler, phase-locked loop anda256/257dual-modulusprescalerandallothercomponents (PLL),phasenoise,voltage-controlledoscillator(VCO). for PLL. This paper is organized as follows. Section II presents the I. INTRODUCTION dual-modulus prescaler which achieves high-speed operation usinganadditionalfeedbackscheme.SectionIIIoverviewsthe THERAPIDevolutionofthecommunicationsindustryhas 10-GHzPLLarchitectureanddiscussesthecircuitcomponents, greatlyincreasedthedemandforlow-costRFcircuitsop- the VCO, phase frequency detector (PFD), and loop filter, as eratingatmicrowavefrequencies.Inresponsetothis,anintense wellasavarietyofdesignissues.SectionIVdescribesthePLL effort has been made over the last eight or nine years to de- implementation and measurement results. Finally, the conclu- velopRFintegratedcircuitsusinglowercostCMOSprocesses, sionsofthispaperaregiveninSectionV. andthisefforthasmaturedtothepointwherenumerousmanu- facturershaveannouncedCMOSRFintegratedcircuits(RFIC) operating at frequencies between 900 MHz and 5.8 GHz. It II. DUAL-MODULUSPRESCALER will not be risky to speculate that, as the frequency bands at 5 GHz and below become crowded, applications at an even Thedual-modulusprescalershowninFig.1consistsofa4/5 higher frequency band will emerge. One of the issues which synchronous divider, a 64 asynchronous divider, an interface must be addressed to bring about this is the feasibility of im- buffer between the synchronous divider and asynchronous di- plementing inexpensive RF components operating at frequen- vider,andadivide-by-fourcircuitwhichmatchestheprescaler cies higher than 5 GHz with sufficient performance. Work to output to the 10-MHz reference frequency. The prescaler is resolvethisissuehasalreadystarted.Recently,CMOSvoltage- made to divide by 256/257. The last divide-by-four circuit is controlled oscillators (VCOs) operating between 25–50 GHz fortestingthePLLwitha10-MHzreference.Becauseofthis, thetotaldivisionratiosare1024and1028.FromFig.1,ifthe asynchronous divider is replaced by a divide-by-256 circuit, ManuscriptreceivedMarch26,2003;revisedSeptember30,2003.Thework the prescaler can be made to divide by 1024/1025. A swallow ofD.-J.YangwassupportedbyMotorolaunderaPartnershipinResearchGrant. counter controls the division ratio (4/5) of the synchronous ThisworkwassupportedbyagrantfromTSMC. D.-J. Yang is with the Silicon Microwave Integrated Circuits and counter. Among all the components of the PLL, the LC tank Systems Research Group, Department of Electrical and Computer VCOisnotthelimitforthemaximumoperatingfrequency.The Engineering, University of Florida, Gainesville, FL 32611 USA (e-mail: dual-modulus prescaler sets the upper limit on the maximum [email protected]). K. K. O is with the Silicon Microwave Integrated Circuits and Systems operating frequency for a frequency synthesizer that can be Research Group, Department of Electrical and Computer Engineering, achieved in a given technology. The interface buffer between University of Florida, Gainesville, FL 32611 USA and also with Global thesynchronousandasynchronousdividerarerequiredbecause CommunicationDevices,Inc.,NorthAndover,MA01845USA. DigitalObjectIdentifier10.1109/TMTT.2003.821918 thesedividersusedifferentpeak-to-peakswings. 0018-9480/04$20.00©2004IEEE 462 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.52,NO.2,FEBRUARY2004 Fig.1. Blockdiagramfor1024/1028dividerusingdual-modulusprescaler. Fig.2. Diagramofa4/5synchronousdividerwithfeedback. Fig.3. Dflip-flop(DFF)schematic. Fig.4. Dflip-flopincludingNOR(DFF_NOR)schematic. The synchronous divider is the most critical circuit of a operation is incorporated into the D flip-flops as shown in prescaler because it operates at the VCO output frequency. Fig. 4. The master D flip-flop of the first synchronous divider To increase the maximum operating frequency, the 4/5 stage contains four NMOS transistors to incorporate the NOR synchronous divider incorporates additional feedback. The logic into the latch. Through this merging of NOR logic for synchronous divider consists of three basic differential D dual-modulus operation into flip-flops, the delays associated flip-flops [10]–[12] linked by forward signal paths and addi- withboththe NOR andflip-flop operationsare reduced,which tional backward feedback paths, as illustrated in Fig. 2. The increasesthemaximumoperatingfrequency[13]. additional feedback paths are drawn with thicker lines. A D The4/5dual-modulussynchronouscounterdividestheVCO flip-flop, which is the basic unit of a divider, shown in Fig. 3, outputbyeither4or5dependingontheswallowcountercontrol consists of a two-stage differential latch. The main purposes signal.Inthecaseofdividingby5,theDflip-flopssustainahigh for using the differential latch are to reduce switching noise signalstateduringthreecyclesandalowstateduringtwocycles. in particular on the supply lines and to increase the operating Intheconventionalsynchronousdividerwithouttheadditional frequency of the flip-flops. Also, the use of a differential feedbackpaths,theHioutputofthedifferentialDflip-flopsin- latch eliminates the delay between output ( ) and inverted creases during the three cycles. Following this, both the NOR output ( ). A NOR logic circuit required for the dual-modulus gate operation and discharging of the output node from Hi to YANGANDO:DUAL-MODULUSPRESCALERWITHSECONDARYFEEDBACKANDITSAPPLICATIONTOAMONOLITHICCMOS10.4-GHzPLL 463 Fig.6. Timingdiagramofafeedbackschemeofasynchronousdivider. Fig.7. Simulationresultcomparisonofthedivideroutputwithandwithout feedback. Fig.5. Basicfeedbackschemeusingdivide-by-fouroperation. Lo must take place within the next half clock cycle. This be- same.Undertheseconditions, and areeithersimultane- comesimpossibleathigherclockfrequencies,andtheprescaler ouslyofforon.When and areon,theriseandfalltimes failstoproperlyfunction. of aredecreased.Thisstrengthensthetransitionof from The additional feedback, by limiting the signal growth Hi to Lo. When both and are off, and are si- duringthefirstthreecycles,increasesthemaximumoperating multaneouslyon,andthetransitionoftheoutput fromhigh frequency of the prescaler. Fig. 5 illustrates the feedback to low is strengthened. During the holding periods, which are schemeusingadivide-by-fouroperation.Inthefigure, onceagainactivatedbyCLK,thelogiclevelsof and are of the second D flip-flop are cross connected to the inputs different.Underthiscondition,if isLo,then isoff, of first D flip-flop or gates of and , which form the staysHi, and its levelincreases. Since is Hi, is onand conventional divide-by-four circuit. Additionally, transistors limitsthegrowthof duringthisholdingperiod.Thisreduces and are added in parallel to and to provide theoutputswingof . additionalfeedbackpathsfromtheslaveofthefirstDflip-flop. Fig.7demonstratesthesimulationresultofa4/5synchronous The additional feedback for the slave in the first D flip-flop divider with and without the additional feedback. Without the is provided by the master latch of the second D flip-flop. The feedback,becauseofthehighoutputswing,itisimpossiblefor feedback for the slave in the second D flip-flop is provide by thedividertoperformtheNORoperationanddischargefromHi themasterlatchofthefirstDflip-flop.Thetransistorsinthese toLo within a 1/2cycle[see Fig.7(a)].Therefore, the divider feedbackpathsaresmallerthanthoseoftheforwardpath. incorrectlyfunctionsat10.4GHz.Thefigureshowstwoincor- The timing diagram in Fig. 6 shows the operation of of rectdivideoperations(incircle)duetothehighoutputswing. Fig.5,whichisanoutputofamasterstageofthe firstD flip- Withthefeedback,becauseofthereducedpeak-to-peaksignal flop.Duringadivide-by-fouroperation,therearetwotransition andstrengtheneddischargefromHitoLoorchargefromLoto periods, where is changed from Hi to Lo or Lo to Hi, and Hi,thedividerfunctionsproperlyatahighoperatingfrequency, two holding periods, where is kept at Hior Lo. , which as shown Fig. 7(b). The output swing at 15-GHz operation in is part of the normal signal path, drives transistor and Fig.7(c)isreducedto0.5V. ofthefeedbackpathdrivestransistor .Duringthetransition However,thefeedbackschemeincreasestheminimumoper- periodsactivatedbyCLK,thelogiclevelof and arethe ating frequency for the divider because the drive capability of 464 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.52,NO.2,FEBRUARY2004 pathtransistorsize.Thisistheactualdesignconditionofasyn- chronous4/5divider.Theoperatingwindowcanbeincreasedto 10GHzwhilereducingthemaximumoperatingfrequencyto 14GHzbydecreasingthefeedbackpathtransistorsizeto 30% ofthesignalpathtransistorsize. III. 10.4-GHzPLL A. OverviewofthePLL Thedual-modulusprescalerisutilizedtoimplementaPLL. Fig. 8. Timing diagram of the circuit with additional feedback at low Fig.10 showsa block diagramof the CMOS PLL. It is an in- frequencies. teger- -type PLL [14], [15]. The PLL consists of a VCO, a VCO buffer, quadrature outputs at 5.2 GHz, a 256/257 dual- modulusprescaler,adivider,aphasefrequencydetector(PFD), achargepump,andaloopfilter.ThePFDandchargepumpare implementedforathree-statephasedetectionscheme[16].The referencefrequencyofthePLLisaround10MHz,whichisre- quired to tune the VCO within its operating frequency range. TheVCObufferisdesignedtooutputa10-GHzsignalwithan 1.5-Vswingtodirectlydrivethedual-modulusprescaler.The loopfilterissecond-orderandusestwocapacitorsandonere- sistor,asshowninFig.10.ThePLLformsathird-ordersystem. Thecapacitorsintheloopfilterareintegratedusingthepolysil- icon-to-n-well MOS structure [17]. The loop bandwidth for a third-orderPLLsystem iscloselyrelatedtothevaluesof Fig.9. Simulationresultaccordingtofeedbackpathtransistorsize. theresistorandcapacitorswhichdeterminethepolesandzeroof theloopfilter.Settingtheloopbandwidthisoneofthemostim- portant stepsfor designing a PLL because the impact of VCO thefeedbackpathexceedsthatoftheforwardpathatfrequen- noise, reference noise, divider noise, spur rejection, and loop ciesbelowtheminimumoperatingfrequency.Fig.8showsthe filternoiseontheoverallPLLnoisecharacteristicsisstrongly D flip-flop outputs and which drive the feedback tran- influencedbytheloopbandwidthchoice.Additionally,theset- sistor and divider transistor , respectively, for the di- tling time of the loop and chip area of the loop filter are in- vide-by-four circuit shown in Fig. 5. During the transition pe- fluencedbytheloopbandwidth.Inthisdesign,theloopband- riodswhich aremarked inFig.8,the differentialoutputsofD widthofthePLLissetto200kHzinordertoreducetheimpact flip-flopsareincreasedatlowerfrequenciesbecausethelonger of noiseontheclose-inphasenoise.Thecorner/transition transition period (shaded regions) results in a larger swing of frequencyofVCOphasenoisefromthefrequencyregiondom- thedifferentialoutput.Meanwhile,duringtheholdingperiods, inatedbythe noisetothatlimitedbythermalnoiseisabout the differential outputs of the D flip-flop are reduced at lower 500 kHz. The charge pump current, which is a determining frequenciesduetotheincreasedfeedbackpathdrivecapability. factoroftheloopbandwidth,canbeexternallycontrolled. Theslavestage( )hasthemaximumdifferentialoutputa halfclockcycleafterthemasterstage( )switches.There- B. DesignofSubblocksofaMonolithicPLL fore, at point A in Fig. 8, because the feedback path differen- tialoutputs haveamuchbiggeramplitudethanthefor- VCO: TheVCOconsistsoftwocross-coupledPMOStran- ward path differential outputs , the drive capability of sistors( and ),aPMOSbiastransistor( ),twoMOS thefeedbacktransistor( )iscomparabletothatofthedivider varactor capacitors ( and ), two spiral inductors ( and transistor( )aroundtheminimumoperationfrequencyeven ), and three bypass capacitors ( , , and ) shown in thoughthetransistor islargerthanthetransistor .Below Fig. 11. The PMOS bias transistor ( ) has a common drain the minimum operating frequency, the drive capability of connection[18].ThephasenoiseperformanceofanLC-VCOis exceedsthatof andthedividerfailstoproperlyoperate. determinedbythetwocross-coupledtransistors( and ), Fig.9showsthesimulatedmaximumandminimumoperating thetailtransistor( ),andparasiticresistancesoftheLCres- frequenciesasafunctionofthefeedbacktransistorsize.The onators. The VCO exclusively uses PMOS transistors for re- axisisthefeedbackpathtransistorsizecomparedtotheforward duced noiseandhot-carrier-inducedwhitenoise[18],[19]. pathtransistorsize(8 m).Ifthefeedbacktransistorwidthisin- In the 0.18- m CMOS process, PMOS transistors have creased,themaximumandminimumoperatingfrequenciesare noisethatisapproximatleyoneorderofmagnitudelower. increased. The operation window for the synchronous divider Todrivetheprescalerandpotentiallyaquadraturegenerator is narrowed with the feedback transistor size. For the circled at highfrequencies, a bufferoperating at 10.4 GHzwhich can region in Fig. 9, the operating window is 7 GHz, the max- providea close torail-to-rail (about1.5 V) signal swing is re- imum frequency is 16 GHz for the synchronous 4/5 divider, quired.ThebuffercircuitisshowninFig.12.Thebufferutilizes andthefeedbackpathtransistorsizeisabout37%ofthesignal alow- (abouttwo)LCtank( , ),aPMOSdclevelshifter YANGANDO:DUAL-MODULUSPRESCALERWITHSECONDARYFEEDBACKANDITSAPPLICATIONTOAMONOLITHICCMOS10.4-GHzPLL 465 Fig.10. PLLblockdiagram. Fig.13. Circuitschematicofchargepump. differential amplifier allows the circuit to properly interface Fig.11. Circuitschematicof10.4-GHzLCtankVCO. to the PFD using a different supply voltage ( ). By using a higher separate supply voltage, noise injection through the charge pump is reduced and the tuning range of the VCO is increased. The current pump-up and -down transistors are cascoded to mitigate the Early effect of the transistors in the 0.18- m process technology. The charge pump circuit generates approximately 100- A current pulses but the pump currentcanbetunedbyalteringtothebiascircuit. Toachievetheloopbandwidthof200kHzwhileintegrating thecapacitorsintheloopfilter,thechargepumpcurrentwasset to 100 Asothatthecapacitorvaluesandtheassociatedloop filterareacanbereduced.Thevaluesof and oftheloop filterare227.1and 14.2pF,respectively.Thesimulatedphase marginis67 . IV. PLLIMPLEMENTATIONANDMEASUREMENTRESULTS Fig.12. CircuitschematicoftheVCObuffer. A. Dual-ModulusPrescaler ( ),andNMOSamplifiers( , ).Thelow isintended As discussed, the PLL utilizes a 256/257 dual-modulus to achieve a broad-band response using the tuned circuit. The prescaler and the output of the prescaler is further divided PMOS transistor sets the bias point of the buffer to around a down by a divide-by-four circuit. To verify the dual-modulus halfof (0.9V).Theresonantfrequencyoftheoutputnet- prescaleroperation,divide-by-1024and-1028operationsmust work (Fig. 12) of the buffer consisting of spiral inductors ( to be checked while the modulus control signal is changed. and )andloadingcapacitances( and )isabout2GHz However, the period difference between the divided-by-1024 higherthantheoperatingVCOfrequency. and divided-by-1028 signals of 0.4 nS for the 10-MHz PFD and Charge Pump and Loop Filter Design: As men- frequencydividedsignalswith aperiod of 100nScould not tioned, the PFD and charge pump circuit form a three-state be reliably recognized using an oscilloscope. Because of this, phasedetectioncircuit[16],[20].Thephasefrequencydetector thedual-modulusoperationoftheprescalerwasverifiedusing utilizes two flip-flops to produce three states such as pull-up, an HP 8503E spectrum analyzer. Fig. 14 shows the output pull-down, and Hi-Z. The charge pump shown in Fig. 13 spectra of the divide-by-four circuit following the 256/257 can have a separate voltage supply ( ). Using a prescaler.Thesemeasuredresultsdemonstratethattheprescaler 466 IEEETRANSACTIONSONMICROWAVETHEORYANDTECHNIQUES,VOL.52,NO.2,FEBRUARY2004 Fig.17. MeasuredphasenoiseofthePLLatI =4.9mA. Fig.14. Measuredresultsofthedual-modulusprescaler. Fig.15. MeasuredtuningrangeoftheVCO. Fig.18. MeasuredphasenoisespectrumofthePLL. TABLE I SUMMARYOFTHEPLL’SPERFORMANCE Fig.16. MeasuredphasenoiseofthePLLandVCOatI =8.1mA. can successfully operate up to 14 GHz versus the simulated maximum frequency of 16 GHz. Fig. 14(a) has the peak at 13.62 MHz, which represents the 14-GHz/1028 signal. This showsthatthedivide-by-fiveoperationofsynchronousdivider properly functions. Fig. 14(b) shows the 14-GHz/1024 signal. This showsthatdivide-by-four operationofa synchronous di- videralsoworks.Indeed,thereisanexpectedoutputfrequency shiftof 53kHz.Themeasuredminimumworkingfrequency of prescaler is 8.2 GHz. The prescaler consumes 15 mA at 1.8 V. B. VCOandPLL range is about 690 MHz from 9.76 to 10.4 GHz. The on-chip The varactor for the VCO is implemented with a polysil- spiral inductor uses a patterned ground shield (PGS) structure icon-to-n-wellMOSstructure[17].Fig.15showsthemeasured [21],[22].Themeasuredinductanceandseriesresistance( ) tuning characteristics of the LC-VCO versus the varactor are 0.4 nH and 3.2 . The inductor quality factor is 8.2 at control voltage between 0–1.8 V at 1.8 V. The tuning 10.4GHz[23].