GlobalEcologyandConservation12(2017)170e187 ContentslistsavailableatScienceDirect Global Ecology and Conservation journal homepage: http://www.elsevier.com/locate/gecco Original Research Article Identifying spatially concordant evolutionary significant units across multiple species through DNA barcodes: Application to the conservation genetics of the freshwater fishes of Java and Bali Aditya Hutama a, Hadi Dahruddin b, Fre(cid:1)de(cid:1)ric Busson c, Sopian Sauri b, Philippe Keith c, Renny Kurnia Hadiaty b, Robert Hannerd, Bambang Suryobroto a, Nicolas Huberte,* aBogorAgriculturalUniversity,FacultyofMathematicsandNaturalScience,AnimalBioscience,Jl.RayaDarmaga,Bogor16680, Indonesia bLIPI,ResearchCenterforBiology,ZoologyDivision,MZB,GedungWidyasatwaloka,Jl.RayaJakartaBogorKm.46,Cibinong-Bogor 16911,Indonesia cMus(cid:1)eumnationald’Histoirenaturelle,UMR7208(MNHN-CNRS-UPMC-IRD-UCBN),CP026,43,rueCuvier,F-75231ParisCedex05, France dBiodiversityInstituteofOntarioandDepartmentofIntegrativeBiology,UniversityofGuelph,Guelph,ON,Canada eInstitutdeRecherchepourleD(cid:1)eveloppement,UMR226ISEM(UM2-CNRS-IRD),PlaceEug(cid:3)eneBataillon,CC065,F-34095Montpellier cedex05,France a r t i c l e i n f o a b s t r a c t Articlehistory: Delineating Evolutionary Significant Units for conservationpurposes is a crucial step in Received3July2017 conservation.Acrossadistributionrange,speciesfrequentlydisplaypopulationstructure Receivedinrevisedform16November2017 that drives the distribution of geneticdiversity.These patterns of geneticstructureand Accepted16November2017 diversity result from intricate interactions between biogeographic history and de- Availableonline1December2017 mographic dynamics. Prior biogeographic knowledge, however, is scarcely available, a trend particularly pronounced in the tropics where the taxonomic impediment is Keywords: hampering biogeographic studies and conservation efforts. DNA barcoding has been Phylogeography initiallyproposedtofostertaxonomicstudiesthroughthedevelopmentofanautomated Biodiversityhotspot Pleistocene molecular system of species identification. While its utility for species identification is SoutheastAsia increasinglyacknowledged,itsusefulnessforfast andlarge-scaledelineationofESUre- Coalescenttheory mainstobeexplored.Ifprovedtobeusefulforthatpurpose,DNAbarcodingmayalsoopen Crypticdiversity new perspectives in conservation by quickly providing preliminary information about population conservation status. The present study aims at assessing the utility of DNA barcodingforthedelineationofESUsamongthemostcommonfreshwaterfishspeciesof JavaandBalithroughthecomparisonofpopulationgeneticstructuresanddiversification patterns across multiple species. Substantial levels of cryptic diversity are discovered among the three widely distributed freshwater fish species analyzed with a total of 21 evolutionaryindependent mitochondriallineages(BINs) observedinBarbodesbinotatus, Channa gachua and Glyptothorax platypogon. The maximum genetic distance for each coalescenttreerangesfrom6.78to7.76K2PgeneticdistancesforC.gachuaandG.pla- typogon,respectively.Diversificationandpopulationgeneticanalysessupportascenarioof allopatricdifferentiation.TheanalysisoftheBINsspatialdistributionindicatesconcordant * Correspondingauthor. E-mailaddress:[email protected](N.Hubert). https://doi.org/10.1016/j.gecco.2017.11.005 2351-9894/©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/ licenses/by-nc-nd/4.0/). A.Hutamaetal./GlobalEcologyandConservation12(2017)170e187 171 distributionpatternsamongthethreespeciesthatallowidentifying18ESUs.Implications fortheconservationgeneticsofthesespeciesarediscussedatthelightofthehistoryofthe region. ©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/). 1. Introduction Conservationaimsatpreservingspeciesevolutionarypotentialtosustaintheiradaptiveabilitiesinfluctuatingenviron- mentsandfuelevolutiononalong-termperspective.Thenatureofthebiologicalunitstobetargetedforachievingthisgoal, however,hasbeenacontentiousissuesincethe1990s(Crandalletal.,2000).Withtheobjectivetogetaroundtaxonomic confusion,Ryder(1986)proposedtheconceptofEvolutionarySignificantUnits(ESU)thathedefinedas‘subsetofthemore inclusiveentityspecies,whichpossessgeneticattributessignificantforthepresentandfuturegenerationsofthespecies’.He proposedtodelineateESUsbasedonconcordantevidencesfromecological,physiologicalandgeneticperspectives(Ryder, 1986). Following this initial formulation, several recognition criteriawere proposed with varying emphasis on reproduc- tive isolation (Waples,1991,1995), historical trends in population structure (Avise,1989; Moritz,1994), shared character states(VoglerandDeSalle,1994)andgeneticorecologicalexchangeability(Crandalletal.,2000).Fromageneticperspective, mostofthecriteriafocusondetectingtheimprintofdisruptedgeneflowinmitochondrialandnucleargenomes,eitherfroma short-termperspectivewhenESUsaredelineatedbasedondifferencesinallelefrequencies(Waples,1991,1995;Dizonetal., 1992; Waples,1995) or long-term perspective when ESUs are based on reciprocal monophyly of their genes genealogies (Avise,1989;Moritz,1994). FraserandBernatchez(2001)highlightedthattheproceduresfordelineatingESUsarebasedoncriteria,notmandatory properties, which applicability depends on biogeographical and ecological context. Since then, major improvements happened in terms of genome analysis and statistical tools to link population genetic data with landscape ecology (HoldereggerandWagner,2006;Andersonetal.,2010;SorkandWaits,2010)orlandscapehistory(Beheregaray,2008).These methodological developments opened new perspectives in conservation, in particular, landscape genetics and niche modelingshedanewlightatthewaywelookatdispersalandgeneflow(Endoetal.,2014;Gutie(cid:1)rrez-TapiaandPalma,2016). Usuallyimplementedatsmallspatialscales,thisprocess-basedapproachrequiresapriorknowledgeofpopulationstructure attheregionalscaleandidentifyingESUsisstillapreliminarystepinconservation(FraserandBernatchez,2001;Pearseand Crandall,2004). DelineatingESUiscontextdependentasEarthbiotasoriginatedfromdiversebiogeographicalhistoriesresultinginspecies ofvaryingage,distributionrangeandpopulationstructure(WiensandDonoghue,2004;Mittelbachetal.,2007;Weirand Schluter, 2007;Hua andWiens,2010). Thus, prior biogeographicknowledge should provide a useful frameworktoguide thedelineationofESUs(Avise,2000;FraserandBernatchez,2001).Thisknowledge,however,isnotsufficientlydetailedfor manyregionsoftheworld,asituationfrequentlyobservedinthetropicswherehighspeciesrichnesshaslargelyamplifiedthe problem (Beheregaray, 2008; Hubert and Hanner, 2015). DNA barcoding, the use of the cytochromeoxidase I gene as an internal species tag for molecular identifications, has opened new perspectives on collecting genomic resources across multiplespecies(Hebertetal.,2004;HebertandGregory,2005;Janzenetal.,2005;Smithetal.,2005;Steinkeetal.,2009; Hubertetal.,2012).AquickscanofpopulationstructureacrossmultiplespeciesthroughDNAbarcodemayprovideapre- liminaryandinsightfulapproachinconservation,priortoamorecomprehensiveassessmentusingbothmitochondrialand nuclearmarkers,by(i)delineatingmitochondriallineagesthatdepartfrompopulationdynamicsanddisplayindependent mutation/driftdynamics(Hajibabaeietal.,2007;Vernooyetal.,2010;RatnasinghamandHebert,2013;KekkonenandHebert, 2014),(ii)providinggenomicresourcesforquickspeciesandESUsmolecularidentification(Hajibabaeietal.,2011;Gibson etal.,2014),(iii)easingthecharacterizationofESUsrangedistributionandtheirspatialmatchacrossmultiplespeciesto identifyconservationpriorities. Suchstrategymaybeparticularlyrelevantinareasfacingmassiveanthropogenicthreatsandwhereconservationstra- tegiesareimpededbythelackofappropriateknowledgeonspeciesevolutionarydynamicsandtaxonomicconfusion,atrend furtheramplifiedbytherecentrarefactionoftaxonomistsworldwide(i.e.taxonomicimpediment).Thissituationiscurrently observedinSouth-EastAsiawherethefourbiodiversityhotspotsidentifiedareamongthemostthreatenedtodate(Myers etal.,2000;Lamoreuxetal.,2006;Hoffmanetal.,2010).ThisisparticularlyevidentfortheinsularhotspotsoftheIndo- nesianarchipelago(i.e.SundalandandWallacea),wheretheimpactofanthropogenicactivitiesisamplifiedbytheirrefugial state, particularly so in the Sundaland hotspot (Kottelat, 1989; Woodruff, 2010; Lohman et al., 2011). Considering that IndonesiaincreaseditsGrossDomesticProduct(GDP)andcarbonemissionsby1000%and400%duringthelasttwodecades (WorldBank),respectively,withapopulationreaching260Millionspeople,itbecomesevidentthatanthropogenicthreats haveincreasedseverely.ThepresentstudyfocusesondelineatingESUsandtheirspatialconcordancethroughthedevel- opmentofaDNAbarcodereferencelibraryforthewidespreadfreshwaterfishesoftheislandsofJavaandBali,twooftheless exploredislandsoftheSundalandhotspot(Hubertetal.,2015b;Dahruddinetal.,2017).Ourobjectiveistoprovidea3-step generalframeworkforthedelineationofESUsthroughtheanalysisofthespatialandtemporalpopulationstructuresamong 172 A.Hutamaetal./GlobalEcologyandConservation12(2017)170e187 multiplespeciesbasedonmitochondrialcoalescenttreesattheCOIgene(Fig.1).Finally,thisframeworkisusedtoprovide recommendationsforevidence-basedconservationstrategiesinthearea. 2. Materialsandmethods 2.1. Samplingstrategyandcollectionmanagement AlargescaleDNAbarcodingcampaignwasconductedbytheauthorsbetweenNovember2012andMay2015across95 sitesinJavaandBaliislands(Dahruddinetal.,2017).Atotalof3310specimens,including162species,110generaand53 familieswerecollected,providingacomprehensiveassessmentoftheJavaneseandBalineseichthyofauna.Amongthose162 species,threespecies(Barbodesbinotatus,GlyptothoraxplatypogonandChannagachua)weresampledinmorethan50%ofthe sitesvisited,displayedunusuallyhighmaximumwithin-speciesgeneticdistancesbasedonapreviousassessmentusinga restrictedsetofindividuals(Dahruddinetal.,2017),andassuchrepresentedsuitablecandidatesconsideringtheobjectiveof thepresentstudies.Eachofthethreespeciesbelongtodifferentordersdisplayingvariedecologicalpreferences(Froeseand Pauly,2011),andassuch,theyensurethattheconcordanceoftheirESUsspatialpatternsisunlikelytoresultsfromthehistory of a restrictedsetof aquatic habitats butoriginated through common evolutionary dynamics of broad impacton aquatic ecosystems(Avise,2000;Aviseetal.,2016). Thethreespecieswerecollectedacross51sitesdistributedacrosstheislandsofJavaandBali(Fig.2,SupplementaryTable S1).Specimenswerecapturedusingvariousgearsincludingelectrofishing,seinenets,castnetsandgillnets.Specimenswere photographed,individuallylabeledandvoucherspecimenswerepreservedina5%formalinsolution.Afincliporamuscle biopsywastakenforeachspecimenandfixedina96%ethanolsolutionforfurthergeneticanalyses.Bothtissuesandvoucher specimensweredepositedatthenationalcollectionsattheMuseumZoologicumBogoriense(MZB)intheResearchCentrefor Biology(RCB)fromtheIndonesianInstituteofSciences(LIPI). 2.2. Sequencingandinternationalrepositories GenomicDNAwasextractedusingaQiagenDNeasy96tissueextractionkitfollowingthemanufacturer'sspecifications.A 651-bpsegmentfromthe50regionofthecytochromeoxidaseIgene(COI)wasamplifiedusingprimerscocktailsC_FishF1t1/ C_FishR1t1includingaM13tails(Ivanovaetal.,2007).PCRamplificationsweredoneonaVeriti96-wellFast(ABI-Applied Biosystems)thermocyclerwithafinalvolumeof10.0mlcontaining5.0mlBuffer2X,3.3mlultrapurewater,1.0mleachprimer (10mM),0.2mlenzymePhire®HotStartIIDNApolymerase(5U)and0.5mlofDNAtemplate(~50ng).Amplificationswere conductedasfollow:initialdenaturationat98(cid:2)Cfor5minfollowedby30cyclesdenaturationat98(cid:2)Cfor5s,annealingat 56(cid:2)Cfor20sandextensionat72(cid:2)Cfor30s,followedbyafinalextensionstepat72(cid:2)Cfor5min.ThePCRproductswere purifiedwithExoSap-IT®(USBCorporation,Cleveland,OH,USA)andsequencedinbothdirections.Sequencingreactionswere performed using the “BigDye® Terminator v3.1 Cycle Sequencing Ready Reaction” and sequencing was performed on the automatic sequencer ABI 3130 DNA Analyzer (Applied Biosystems). The sequences and collateral information have been depositedinBOLD(RatnasinghamandHebert,2007)intheprojectsBIFGAandBIFGinthecontainer‘BarcodingIndonesian Fishes’ofthe‘BarcodingFish(FishBOL)’campaignandDNAsequencesweresubmittedtoGenBank(accessionnumbersare accessibledirectlyattheindividualrecordsinBOLD). 2.3. Populationgeneticstructure(Fig.1,step1a) Weexaminedthedistributionofmolecularvariancethroughanadditivepartitioningacrossincreasingspatialscalesas implementedinAMOVA(Excoffieretal.,1992;ExcoffierandSmouse,1994).WeoptedfortheSAMOVAversionthatboth definesgroups ofpopulationswithout apriori partitioningschemeandestimatesmolecularvariancewithinpopulations, amongpopulationswithingroupsandamonggroups,basedonasimulatedannealingapproach(Dupanloupetal.,2002). SAMOVAisnotadecision-basedmethodpointingtotheoptimalnumberofgroups,wehenceappliedanempiricalthreshold andstoppedincreasingthenumberofgroupsoncethepartitioningschemeproducedatleastonegroupconsistingofasingle sampling site. The SAMOVA were performed for each species using the software SAMOVA 2.0 (Dupanloup et al., 2002). SAMOVApartitioningschemeswerefurthercomparedtotheresultsofahierarchicalclusteringbasedongeneticdistances. MeangeneticK2PdistanceswerecomputedamongsamplingsitesusingMEGA6(Tamuraetal.,2013)andusedtoproduce hierarchicalclustersderivedfromthecompletelinkagealgorithmasimplementedinhclustfunctionoftheRStatsver.3.1.2 package(R_Core_Team,2014).Finally,traditionalparametersofpopulationgeneticdiversityincludingthenumberofhap- lotypes,nucleotidicdiversityandmeanpairwiseK2PdistanceforeachgroupswerecomputedusingARLEQUIN3.5(Excoffier etal.,2005). 2.4. Delineatingmitochondriallineagesandinferringtheirdiversification(Fig.1,step1b) Severalalternativemethodshavebeenproposedfordelineatingmolecularlineages(SchlossandHandelsman,2005;Pons etal.,2006;Puillandreetal.,2012).Theyhaveallincommontodetecttransitionzonesinbranchingpatternsresultingfrom differentsegmentsofthegenegenealogiesthatoriginatedfromphylogeneticdiversification(speciationandextinction)or Fig.1. ConceptualframeworkdevelopedinthepresentstudyforthedelineationofESUs.Step1a,detectionofgroupsofpopulationsdifferentiatedbytheir haplotypesfrequencies.Step1b,detectionofmolecularlineageswithindependentevolutionarydynamics(e.g.lowerconnectance).Step2,comparingpopulation groupswithmolecularlineages.Ifpopulationgeneticstructureresultsfromancientfragmentationofthepopulations,acorrelationbetweengeneticgroupsand BINsisexpected.Conversely,thelackofcorrelationwouldindicatethatpopulationgroupsoriginatedrecentlyandeithershareancientpolymorphismorhave beenconnectedbygeneflowinarecentpast(Fu,1999;NielsenandWakeley,2001;Wakeley,2001,2003).Alongthesameline,severalBINsmaybedelineated withinageneticgroupasaconsequenceofthestochasticnatureofthecoalescentbutnotdisruptedgeneflow(Hudson,1982;Kingman,1982;Tajima,1983).Step 3,DelineationofESUsforindividualspecies.ESUsaredefinedbasedoneithervariationofhaplotypefrequenciesorindependentmitochondriallineagesafter comparisonswiththephylogroupsdefinedasgroupsofpopulationsharingsimilarsetsofmitochondriallineages. 1 7 4 A . H u ta m a e t a l. / G lo b a l E co lo g y a n d C o n se rv a tio n 1 2 (2 0 1 7 ) 17 0 Fig.2. Locationofthe51collectionsitesforthesamplesanalyzedinthisstudy. 1e 8 7 A.Hutamaetal./GlobalEcologyandConservation12(2017)170e187 175 Table1 Partitioningofthemolecularvarianceatvariousspatialscales,fixationindexesandnumberofpopulationgroupsasinferredfromSAMOVA.Thepercentage columnindicatestheamountoftotalvarianceexplainedbyeachofthehierarchicallevelsaccordingtothenumberofgroupsofpopulation.F-statistics estimatethecorrelationamonghaplotypesateachofthehierarchicallevelsexaminedandtheirsignificantdeparturefromarandomdistributionofthe haplotypewastestedthroughrandomizationacross1000permutations. NumberofGroup C.gachua G.platypogon B.binotatus 5 7 6 Variancecomponent Variance%of P F-statisticsVariance%of P F-statisticsVariance%of P F-statistics total total total Amonggroups 8.788 70.56 <0.001FCT¼0.7068.042 78.75 <0.001FCT¼0.7886.958 69.90 <0.001FCT¼0.702 Amongpopulationswithin 3.071 24.69 <0.001FSC¼0.8391.516 11.34 <0.001FSC¼0.5342.094 10.75 <0.001FSC¼0.361 groups Withinpopulations 0.591 4.75 <0.001FST¼0.953 1.015 9.91 <0.001FST¼0.9010.903 19.05 <0.001FST¼0.890 coalescent dynamics (mutation and drift). We opted for the Refined Single Linkage (RESL) algorithm that considers the number of connections of each sequences in a network estimated through the silhouette index (Rousseuw, 1987) as implemented in BOLD. Sequence connectivity is explored through random walks and optimal partitioning schemes are identifiedthroughMarkovclustering.Attheend,eachclusterofsequenceisassignedtoaBarcodeIndexNumber(BIN)in BOLD(RatnasinghamandHebert,2013). Once BINs were delineated (Table S2), their timing of diversification was explored through the Bayesian approach implementedinBEAST1.8.1(Drummondetal.,2012).Inordertoestablishrobustprior,thebest-fitsubstitutionmodelwas selectedthroughtheBayesianInformationCriterion(BIC) asimplemented inJMODELTEST2.1.7 (Darribaetal., 2012)and furtherusedasapriorforthejointreconstructionoftreetopologyanddivergencetimes.Theinitialtreetopologywasob- tainedwithanUPGMAstartingtreeandaCoalescentmodelwasusedasatreeprior(Kingman,1982).Weusedthecanonical fishsubstitutionrateof1.2%ofgeneticdivergenceperMillionsyearsformitochondrialproteincodinggene(Bermingham etal.,1997)andappliedittothemaximumK2PdistancewithineachspeciestoestimatetheageoftheMostRecentCom- monAncestor (MRCA) tobe used asa priorfor Bayesiananalyses. The priorupperand lower boundsfor theMRCAs age intervalswerederivedfromtheknownhighestandsmallestsubstitutionratesforfishmitochondrialgenomes(Hardmanand Lundberg,2006;Readetal.,2006).WeranoneMCMCof10(cid:3)106steplong,sampledevery1000stateswithaburn-inperiod of10000.ThemaximumcredibilitytreewasobtainedwithTreeAnnotator1.8.1afteranadditionalburn-inperiodof10000. Mediannodeagesand95%highestposteriordensity(HPD)intervalswereplottedinthechronogram.Duplicatedsequences wereremovedfortheseanalyses.WefurtherexploredthepropertiesofBINsdiversificationthroughLineageThroughTime (LTT)plots(Harveyetal.,1994)andtheGeneralizedSkylinePlots(GSP)(StrimmerandPybus,2001)methods.TheBayesian LTTwasconductedthroughsimilarMCMCparametersasofthetreeanalysesandduplicatedsequenceswereremoved.The BayesianGSPanalyseswereconductedontheentiredataset,includingduplicatedsequences,aHKYsubstitutionmodeland MCMCchainsof50(cid:3)106stepslongsampledasdescribedforLTTandtreereconstructionanalyses. 2.5. DelineatingESU(Fig.1,steps2&3) WeexaminedtherelationshipbetweenthegeneticgroupsdelineatedbySAMOVAandtheBINs(Fig.1,Step2)bytesting theindependenceofeachpartitioningschemeusingthePearsonchi-squaretestofindependenceasimplementedintheR Statsver.3.1.2package(R_Core_Team,2014).TheobjectivewastoexaminetowhatextenttheSAMOVAgroupsofpopulations weredeterminedbytheBINsdelineatedbytheRESLalgorithm(Fig.1,Step2).Wefurtherexaminedtheconcordanceofthe BINsspatialdistributionamongspeciesbyperformingageneralhierarchicalclusteranalysisbasedontheaveragephylo- geneticdistanceoftheBINsamongsitesasimplementedinhclustfunctionoftheRStatsver.3.1.2package(R_Core_Team, 2014). The matrixof phylogenetic distance among sites was computed based on the composite chronogram of the three graftedmaximumcredibilitytreesofBarbodesbinotatus,ChannagachuaandGlyptothoraxplatypogonandBINsoccurrence data using the R package PICANTE (Kembel et al., 2010). The composite chronogramwas constructed byadding internal branchessetto0.001Millionsyearsbetween(i)theMRCAofB.binotatusandtheMRCAofG.platypogon,(ii)theMRCAofboth B.binotatusandG.platypogonandtheMRCAofthethreespecies.TheinternalbranchbetweentheMRCAofC.gachuaandthe MRCAofthethreespecieswasfurtheradjustedtoproduceanultrametrictree.BINswereconsideredasabsentfromsitesout oftheirdistributionrangebutBINsabsencewascodedasmissingdataatsiteswithintheirdistributionrangeinorderto accountforsamplinguncertaintyi.e.aBINpresentbutnotsampled(TableS3).Wefinallyproduceddistributionmapsofthe populationgroups(Fig.1,Step1a),theBINs(Fig.1,Step1b)andthegeneralhierarchicalcluster(Fig.1,Step3).Thegeneral hierarchicalclusterwasfurtheredusedtodefinephylogroupsi.e.groupsofsiteshostingphylogeneticallyrelatedBINs.The distributionofthephylogroupswasusedasatemplatetospotphylogeographicbreaks,asexemplifiedbythephylogroup geographicboundaries,andcomparedtothedistributionofSAMOVAgroupsandBINStoproposeESUs(Fig.1,Step3). 1 7 6 A . H u ta m a e t a l. / G lo b a l E co lo g y a n d C o n se rv a tio n 1 2 (2 0 1 7 ) 17 0 e 1 8 Fig.3. PopulationgeneticstructureofBarbodesbinotatus(a),Channagachua(b)andGlyptothoraxplatypogon(c)asinferredfromthehierarchicalclusteranalysisandSAMOVA. 7 A.Hutamaetal./GlobalEcologyandConservation12(2017)170e187 177 3. Results A total of 317 new sequences were successfully generated for the three species including 108 sequences of Barbodes binotatus,99sequencesofChannagachuaand110sequencesofGlyptothoraxplatypogon.Togetherwiththe37sequences previouslypublishedforthesespecies(Dahruddinetal.,2017),atotalof354sequenceswereanalyzedincluding122se- quencesofBarbodesbinotatus,109sequencesofChannagachuaand123sequencesofGlyptothoraxplatypogon(TableS1).All the sequences were above 500 bp of length and no codon stops were detected, suggesting that the sequences collected representfunctionalcodingregions.The354sequenceswerecollectedfrom39sitesforB.binotatus,28sitesforC.gachuaand 25sitesforG.platypogon. 3.1. Populationgeneticstructureandmolecularvariance A total of 5, 7 and 6 groups of populations were delineated for Channa gachua, Glyptothorax platypogon and Barbodes binotatusrespectively(Table1,TableS1).Forthethreespecies,mostofthemolecularvarianceisexplainedbydifferences amonggroupsofpopulationswithapercentageofthetotalvariancerangingfrom69.9percentinB.binotatusto78.75percent inG.platypogon.‘Amongpopulationswithingroups’isthesecondlevelintermsofthetotalvarianceexplainedwith24.69 percentforC.gachuaand11.34percentforG.platypogon.B.binotatusdiffersfromthetwootherspeciesinhavingaslightly higherproportionofthetotalvarianceexplainedbydifferenceswithinpopulations,with19.05percent,thanamongpop- ulations within groups, with 10.75 percent. The fixation indexes are significant at all spatial scales supporting spatially structured populations in the three species. This result was further confirmed by the hierarchical cluster analysis of the populationsthatindicatesasubstantialgeneticdifferentiationofeachgroupwithK2Pgeneticdistancesamonggroupsabove 0.04,0.02and0.01forC.gachua,G.platypogonandB.binotatus,respectively(Fig.3).Withingroupsofpopulations,haplotype diversityishighonaveragewithhabove0.5exceptingforpopulationgroupsII,VandVIIofG.platypogonwithhbelow0.2 (Table2).Thishighhaplotypediversityisopposedtothelownucleotidediversityandthelowmean-pairwisedifferences withingroupsforthethreespecies. 3.2. DelineationanddiversificationofBINs Atotalof9,7and3molecularlineages(i.e.BINs)weredelineatedbytheRESLalgorithmonBOLDforChannagachua, GlyptothoraxplatypogonandBarbodesbinotatus,respectively(TableS1).BothmaximumandaverageK2Pdistancesarelowon averagewithinBINsandcontrastwiththehighmaximumK2Pdistancesobservedforeachofthethreecoalescenttrees(Table 3).Amongthe19BINsdelineated,fourwererepresentedbysingletonsinC.gachua(ACQ3951,ACQ6941,ACQ6939,ACQ6940). TheBayesiananalysesyieldedthreemaximumcredibilitytrees(Fig.4a,b,4C)thatconfirmedthecontrastbetweenthedeep divergence among BINs, ranging from 0.47 to 2.75 Millionyears ago (Ma), and the shallow coalescent depth of the BINs rangingfrom0.08to0.89Ma(Table3).TheageoftheMRCAwasverysimilaramongthethreespeciesrangingfrom2.71Ma forB.binotatusto3.14MaforG.platypogon(Table3).PlottingtheBINscoalescentdepthontheLTTcurvesfurtherconfirmed thatthemoleculardiversitywithinBINsaccumulatedveryrecentlywithinthethreespecies(Fig.4d,e,4f).TheBayesianGSP Table2 Summarystatisticsofthegeneticdiversityincludingthesamplingsize(N),haplotypediversity(h),nucleotidediversity(p)andmeannumberofpairwise differencesamonghaplotypes(mean-pairwisedifferences)foreachofthepopulationgroups. N h p mean-pairwisedifferences Barbodesbinotatus I 4 1 0.019 12.17 II 22 0.87 0.002 1.41 III 33 0.83 0.002 1.37 IV 12 0.55 0.005 2.73 V 36 0.82 0.004 2.35 VI 15 0.89 0.011 6.88 Channagachua I 14 0.88 0.006 3.91 II 34 0.93 0.010 6.07 III 11 0.51 0.008 0.51 IV 36 0.81 0.009 5.85 V 14 0.58 0.011 6.97 Glyptothoraxplatypogon I 16 0.58 0.001 0.75 II 34 0.28 0.004 2.29 III 6 0.60 0.001 0.60 IV 39 0.75 0.006 3.62 V 10 0.20 0.002 1.20 VI 7 0.91 0.032 20.80 VII 11 0.18 0.001 0.18 178 A.Hutamaetal./GlobalEcologyandConservation12(2017)170e187 Table3 SummarystatisticsofthegeneticK2Pdistancesandageestimates.ThemaximumandaverageK2PdistancesareprovidedforeachBINsandthemaximum K2Pdistancesareprovidedfortheentirecoalescenttrees.TheageestimateoftheMRCAisprovidedbasedonthreealternativehypothesesofmolecularclock including 0.005 genetic divergence per millionyears (Hardman and Lundberg, 2006; Read et al., 2006), 0.012 genetic divergence per millionyears (Berminghametal.,1997)and0.02geneticdivergencepermillionyears(Readetal.,2006).DivergenceestimatesarederivedfromtheBayesiananalyses basedontheH2calibrationwithupperandlowerboundsofthepriorageintervalsdefinedbythemolecularclockhypothesesH1andH3. K2Pdistance(%) MRCAH1a(Myr) MRCAH2b(Myr) MRCAH3c(Myr) Divergenceestimates(Myr) Coalescentdepth(Myr) Maximum Average Channagachua Coalescent 6.78 6.78 2.83 1.70 2.75(6.02-1.70) ACQ0292 2.1 0.87 2.04(4.56-0.82) 0.66(1.60-0.26) ACQ0290 1.4 0.61 2.04(4.56-0.82) 0.61(1.49-0.16) ACQ0291 0.15 0.08 2.75(6.02-1.70) 0.08(0.31-0.01) ACQ3951 - - 1.23(2.87-0.41) - ACQ6941 - - 0.73(1.75-0.24) - ACQ6940 - - 0.47(1.17-0.24) - ACQ6939 0.00 0.00 0.47(1.17-0.24) - ACQ3952 1.4 0.31 0.87(2.08-0.31) 0.14(1.40-0.14) ACQ3950 0.93 0.32 0.87(2.08-0.31) 0.33(0.84-0.08) Glyptothoraxplatypogon Coalescent 7.76 7.76 3.24 1.94 3.14(6.74-1.94) ACQ5850 - - 1.05(2.68-0.21) 0.13(0.45-0.01) AAY1028 0.00 0.00 1.05(2.68-0.21) 0.08(0.33-0.01) ACQ5898 0.93 0.23 1.75(4.22-0.51) 0.39(1.13-0.05) ACP6225 0.31 0.12 1.98(4.71-0.73) 0.23(0.72-0.03) ACQ6223 1.24 0.55 1.09(2.63-0.32) 0.50(1.35-0.14) ACP6117 0.15 0.09 0.69(1.75-0.18) 0.08(0.34-0.01) ACQ6224 0.46 0.05 0.69(1.75-0.18) 0.21(0.56-0.05) Barbodesbinotatus Coalescent 6.80 6.8 2.84 1.70 2.71(5.96-1.70) ACP6290 0.01 0.00 2.71(5.96-1.70) 0.12(0.41-0.01) ACP6025 0.57 1.09 1.74(4.26-0.48) 0.38(1.12-0.08) ACP5712 1.94 0.73 1.74(4.26-0.48) 0.89(2.33-0.48) a 0.005. b 0.012. c 0.02. yieldedverysimilardemographictrajectoriesforthethreespecieswithaglobaltrendofconstantpopulationsizeoverthe last2millionsyearsandasteepdeclineofpopulationsizeduringthelast100.000years(Fig.4g,h,4i). 3.3. IdentifyingphylogroupsanddelineatingESUs ThenullhypothesisofindependencebetweenpopulationgroupsdelineatedbySAMOVAandBINswasrejectedbythe Pearsonchi-squaretest(Х2¼4486.7,p-value<0.001)suggestingthatthedelineationofpopulationgroupsislargelysup- ported by alternative distribution of BINs among populations. The general hierarchical cluster constructed using the phylogeneticdistanceamongsitesresultedinthedelineationoffivemajorphylogroups,divergingbymorethan5Million yearsonaverage,andorderedintotwomainclusters(Fig.5).ThegeographicrangeofphylogroupsIandIIshowednooverlap andallowedidentifyingthreephylogeographicbreaks(Fig.5b).PhylogroupIisrestrictedtothewesternpartofJavawhile phylogroupIIshowsanalternativedistributionineasternJavaandBali.Thefirstphylogeographicbreakidentifiedislocated intheJava-BalistraightbasedonthesegregationofphylogroupsIandIIoneachsideofthestraight(Fig.5,break1).The secondphylogeographicbreakidentifiedislocatedincentralJava,inbetweenthewesternandcentralvolcanicarches(Fig.5, break2).Thethirdphylogeographicbreakislocatedonthewesternmostslopeofthewesternvolcanicarchbasedonthe westernlimitofphylogroupII(Fig.5,break3).ThedistributionrangesofphylogroupsIII,IVandVaremoreintricatedbut showsomesimilaritieswithrangedistributionofphylogroupsIandII.TheJava-Balistraightisalsoidentifiedasaphylo- geographicbreaksegregatingphylogroupsIVandV,eachbeingalternativelydistributedinJavaorBali(Fig.5,break1).The centralJavaphylogeographicbreakisalsoassociatedwiththesegregationofphylogroupsIIIandV(Fig.5,break2)buttwo additionalphylogeographicbreaksareidentifiedincentraljava,inbetweenthewesternandcentralvolcanicarches,thatare associatedwiththesegregationofphylogroupIIIfromthephylogroupV(Fig.5,break4)andthesegregationofanisolatedsite ofphylogroupVfromtheeasternsites(Fig.5,break5).Thewesternmostphylogeographicbreakisalsoassociatedwiththe segregationofphylogroupsIVandVintheirwesternrangebutwithsomeoverlaps(Fig.5,break3). TheboundariesofpopulationgroupsandBINsrangedistributionaregenerallyassociatedwiththefivephylogeographic breaksforthethreespecieswithsomeexceptions(Fig.6).Threecasesoftransdistributionacrossphylogeographicbreaksare detectedinC.gachua(Fig.6aandb).Thefirstcaseislocatedatthephylogeographicbreak3withthepopulationgroupV (Fig.6a,red).ThepopulationgroupV,however,isassociatedwithfourindependentBINs.Thesecondcaseisassociatedwith the phylogeographic break 2 with the population group IV (Fig. 6a, yellow). Finally, the population groups I and II are A . H u ta m a e t a l. / G lo b a l E co lo g y a n d C o n se rv a tio n 1 2 (2 0 1 7 ) 1 7 0 e 1 8 7 Fig.4. BINsdiversificationpatternsofChannagachua(a,dandg),Glyptothoraxplatypogon(b,eandh)andBarbodesbinotatus(c,fandi)includingMaximumCredibilityTrees(a,b,c);LineageThroughTimeplot(d,e,f) andBayesianGeneralizedSkylinePlots(g,h,i).Solidblacklineind,eandfisthemediandiversityaccumulationcurve,blueshadedareaisthe95%highestposteriordensityintervalsanddottedlinesrepresenttheBIN coalescentdepthinMillionyears.Thesolidblacklineing,handirepresentthemedianeffectivepopulationsize,blueshadedareaisthe95%highestposteriordensityintervalsandPopulationsizescalar(in millions)¼effectivepopulationsizexgenerationtime.CalibrationsarederivedfrompreviouslypublishedmolecularclockhypothesesappliedtothemaximumK2Pdistanceforeachspecies-i.e.ageoftheMRCA(see Table3).(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.) 1 7 9
Description: