ebook img

Identification of red high proper-motion objects in Tycho-2 and 2MASS catalogues using Virtual Observatory tools PDF

4.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Identification of red high proper-motion objects in Tycho-2 and 2MASS catalogues using Virtual Observatory tools

Astronomy&Astrophysicsmanuscriptno.Jimenez-Esteban (cid:13)c ESO2012 January26,2012 Identification of red high proper-motion objects in Tycho-2 and 2MASS catalogues using Virtual Observatory tools F.M.Jime´nez-Esteban1,2,3,J.A.Caballero1,R.Dorda4,5,P.A.Miles-Pa´ez4,6,andE.Solano1,2 1 CentrodeAstrobiolog´ıa(INTA-CSIC),DepartamentodeAstrof´ısica,POBox78,E-28691,VillanuevadelaCan˜ada,Madrid,Spain e-mail:[email protected] 2 SpanishVirtualObservatory 3 SaintLouisUniversity,MadridCampus,DivisionofScienceandEngineering,AvenidadelValle34,E-28003,Madrid,Spain 4 DepartamentodeAstrof´ısicayCienciasdelaAtmo´sfera,FacultaddeCienciasF´ısicas,AvenidaComplutenses/n,E-28040,Madrid, 2 Spain 1 5 DepartamentodeF´ısica,Ingenier´ıadeSistemasyTeor´ıadelaSen˜al,EscuelaPolite´cnicaSuperior,UniversityofAlicante,Apdo.99, 0 E-03080,Alicante,Spain 2 6 InstitutodeAstrof´ısicadeCanarias,E-38200,LaLaguna,Tenerife,Spain n Received01Nov2011/Accepted..Jan2012 a J ABSTRACT 5 2 Aims.Withavailable Virtual Observatory tools, welooked for new Mdwarfs in thesolar neighbourhood and M giantswith high tangentialvelocities. ] R Methods.Fromanall-skycross-matchbetweentheoptical Tycho-2andthenear-infrared2MASScatalogues, weselectedobjects withpropermotionsµ>50masyr−1 andveryredV −K colours.Forthemostinterestingtargets,wecollectedmulti-wavelength S T s photometry,constructedspectralenergydistributions,estimatedeffectivetemperaturesandsurfacegravitiesfromfitstoatmospheric . h models,performedtime-seriesanalysisofASASV-bandlightcurves,andassignedspectraltypesfromlow-resolutionspectroscopy p obtainedwithCAFOSatthe2.2mCalarAltotelescope. - Results.Wegotasampleof59bright redhighproper-motionobjects,includingfiftyredgiants,four reddwarfs,andfiveobjects o reported in this work for thefirst time. The five new starshave magnitudes V ≈10.8–11.3mag, reduced proper motions midway T r betweenknowndwarfsandgiants,near-infraredcolourstypicalofgiants,andeffectivetemperaturesT ≈2900–3400K.Fromour t eff s time-seriesanalysis,wediscoveredalongsecondaryperiodinRuber4andanextremelylongprimaryperiodinRuber6.Withthe a CAFOSspectra,weconfirmedtheredgiantnatureofRuber7and8,thelastofwhichseemstobeoneofthebrightestmetal-poorM [ giantseveridentified. 1 Keywords.astronomicaldatabases:miscellaneous–virtualobservatorytools–stars:late-type–stars:oscillations–stars:chemi- v callypeculiar–stars:peculiar 5 1 3 1. Introduction through small amateur telescopes). With Caballero&Solano 5 . (2008) and Jime´nez-Estebanetal. (2011), we started a project 1 For the Virtual Observatory (VO), there are seductive mottoes devoted to identifying bright blue objects in the Tycho-2 cata- 0 (e.g.theUniverseatyourfingertips;NVO1)andbombasticdefi- logue interesting for other follow-up studies. In particular, our 2 nitions(e.g.aninternationalastronomicalcommunity-basedini- surveys have provided some of the brightest hot subdwarfs 1 tiative[that]aimstoallowglobalelectronicaccesstotheavail- everfound,whichenormouslyfacilitatesforthcomingastroseis- : v ableastronomicaldataarchivesofspaceandground-basedob- mologic, spectroscopic, and multiplicity analyses (Oreiroetal. Xi servatoriesandotherskysurveydatabases[and]toenabledata 2011;Vennesetal.2011). analysistechniquesthroughacoordinatingentitythatwillpro- Here we go on examining high proper-motion objects in r videcommonstandards,wide-networkbandwidth,andstate-of- a the-art analysis tools; EURO-VO2). One of the most tangible Tycho-2and2MASScataloguesusingVOtools,thistimetothe other side of the colour-magnitudediagram, looking for bright resultsoftheVO endeavourisa suite ofanalysistools(theso- redobjects.Intheabsenceofdiscsordustenvelopes,redcolours called “VO tools”), which are used more and more frequently aresynonymouswithloweffectivetemperatures(T ∼3000K by the astronomical community,as demonstrated by the grow- eff ingnumberofVOpapers3(see,forinstance,Caballero2009for forthecooleststarsinTycho-2).Apriori,therearenotmanyal- ternativesforclassifyingsuchbrightlate-typeobjectswithhigh agoodexampleofthis). proper-motion:theycanbeeithernearbyMdwarfsorredgiants While there is a current trend to discovering the “faintest, withhightangentialvelocities. coolest, smallest” objects in our Galaxy (e.g. Delormeetal. 2008; Kirkpatricketal. 2011), there is still a lot to do with FindingasingleuncataloguedTycho-2dwarflaterthanM3V relatively bright unknown objects (V & 11mag – i.e. visible would justify the whole current survey. With V ∼ 11mag, a star like thatwouldhave J . 7magandinevitablybea golden 1 http://www.us-vo.org target for the next high-resolution, near-infrared (NIR), radial- 2 http://www.euro-vo.org velocity surveys seeking Earth-like planets (Reiners&Basri 3 http://www.euro-vo.org/pub/fc/papers.html 2010; Mahadevanetal. 2010; Quirrenbachetal. 2010). Such a 1 F.M.Jime´nez-Estebanetal.:Redhighproper-motionobjectsinTycho-2and2MASS finding was also one of the aims of Le´pine&Gaidos (2011), Most of the known reddest Tycho-2/2MASS stars with who presents an all-sky catalogue of M dwarf stars with ap- µ>50masa−1 aregiants.Exceptfora few cases, the fiftystars parent infrared magnitudes J < 10.0mag. In a sense, the inTable1arewellknownclass-IIIgiants(suchasMiraCetAB, Le´pine&Gaidos(2011)catalogueandoursarecomplementary. L Pup,g Cen, andRLyr,whichare theonlystars inthe table 2 The other alternative is a late-type giant (spectral class M, at d < 100pc), semi-regular pulsating, irregular, or Mira vari- C, or S). Since giantsare intrinsically luminous,theyare com- ables.Theyarelocatedatlongparallacticdistances,havestrong monly located at long heliocentric distances. However, if they fluxdensitiesintheIRAScatalogueofpointsources,saturatein have appreciable proper motions, of over a few tens of mil- 2MASSJHKsbands,and/oralreadyhavespectraltypeandclass liarcseconds per year, their tangential velocities must be very determinations (mostly found in the spectral type compilation high.Asa result,theymaybelongto theGalactic thickdiscor byKwoketal.1997)consistentwithitslocationinthereduced eventhehalo(Carney&Latham1986;Rocha-Pintoetal.2004; propermotiondiagramfarfromthemainsequence.Theonlyex- Famaeyetal. 2005). Our work is expected to catalogue all the ceptionstothecollectionofstarswithevidenceof“giantism”are brightest,reddestgiantsoverthewholesky,whichareexcellent thepoorlyinvestigatedstarsBD+311540andHD150184.The targetsforinvestigatingthedynamicsandmetallicitystructureof formerwasalreadypresentedasastar witha remarkablespec- the Milky Way (McWilliam&Rich 1994; Lambertetal. 1986; trum by Espin (1892) in the 19th century, and it has the same Beersetal. 2002) and their interiors through pulsation analy- propertiesastherestofthestarsinthetable.Thelatterdoesnot ses (Wood&Cahn 1977; Bergeatetal. 2002; Kiss&Bedding haveaSIMBADentryatall,butwastabulatedasanM3–4giant 2003).Besidesthis,wealsoexpecttodiscoverrareexamplesof starbyHouk&Cowley(1975). brightredgiants. Thefourotherknownstars,showninTable2,areMdwarfs in the solar neighbourhood. While two of them have accurate parallacticdistancesmeasuredbyHipparcos(QYAurAB:d = 6.29±0.12pc;YZCMi:d =5.95±0.07pc;vanLeeuwen2007), 2. Analysisandresults the other two only have photometric distances placing them at 2.1.Targetselection 8–10pc(Reidetal.1995;Beuzitetal.2004).Threeofthefour stars have propermotionslargerthanany giantin Table 1, and We used the sample of 155,384 sources with proper motions one of them up to 1000masa−1. The four stars have spectral µ>50masa−1 obtained from the cross-match of the whole typedeterminationsatM3.5–4.5V,consistentwiththeobserved Tycho-2 (Høgetal. 2000) and 2MASS (Skrutskieetal. 2006) optical and NIR colours (in contrast to the giants, none of the cataloguesconstructedbyJime´nez-Estebanetal.(2011).Wese- dwarfs saturate in the 2MASS JHK bands). Interestingly, the s lected red high proper-motion star candidates based on their fourdwarfsare(candidate)membersinmultiplesystemsand/or position on the reduced proper motion-colour diagram shown youngmovinggroups: in Fig. 1. Quantitatively, the applied selection criterion was V − K > 6.0mag if H ≤ 8mag and V − K > 5.5mag T s VT T s – BD–21 1074 BC is part of a hierarchical triple system, if H > 8mag. The abnormally large errors in K because of VT s WDS05069–2135,whichwasdiscoveredbyDonner(1935). saturationofthebrightestobjectsbarelyaffectthedatapointlo- The primary (A, GJ 3331) is a nearby flare M1.5V star at cation in the diagram. The application of this simple selection 8.22arcsectoatightersystem(BC,GJ3332)oftwoslightly criterion resulted in 73 objects with redder colours than these cooler stars separated by only 0.80arcsec. Neither Tycho- values,whichisanappropriatenumberofsourcestobestudied 2 nor 2MASS were able to resolve the tight binary, which individuallyonareasonabletimescale. is 1.15mag redder than the primary in V − K . Based on T s Next, we carried out a visual inspection of the 73 se- a significant amount of Li i in absorption in the spectra of lected candidates in a similar way to the one described in both A and BC components,X-ray emission, and kinemat- Jime´nez-Estebanetal. (2011). Six of them were found to have ics,daSilvaetal.(2009)classifiedthesystemasamember erroneous proper motions in the Tycho-2 catalogue. As an ex- oftheveryyoungβPictorisassociation(τ∼12Ma). ample, the catalogue gives a proper motion (µαcosδ, µδ) = – QYAurABisa“classic”doubleinthesolarneighbourhood. (–14, –84)masa−1 for the star TYC 6238–480–1, while we It is a spectroscopic binary with an approximate period of measured (+0.9±1.4, −12.4±0.6)masa−1 using six astromet- 10.43dandarelativelyhighorbitaleccentricityof0.34with ric epochs covering 43.7 years and the method exposed by nopreviousreportofmembershipinayoungmovinggroup. Caballero (2010). In this case, the Tycho-2 measurement was – YZ CMi, although it has a Washington Double Star cata- likely affected by a visual (unbound)companion at 8arcsec to logueentry,seemstobesingle(Lafrenie`reetal.2007).Itis the North, ∼2.8mag fainter in the R band. The five other dis- anemission-linedwarfwithmegaflares,whichhasbeenre- carded stars have even lower actual proper motions. In addi- peatedlyinvestigated(e.g.,Kunkel1969;Kahleretal.1982; tion,we discardedanothereightclosebinarystars, resolvedby Kunduetal.1988;Benz&Alef1991).Montesetal.(2001) Tycho-2 but unresolved by 2MASS, because of their incorrect classifythestar asa memberoftheLocalAssociation(τ ∼ resultingcolours. 10–150Ma). – The magnetically active binary star DG CVn AB (WDS13318+2917),oneoftheonlythreeknownMdwarf 2.2.Preliminarytargetclassification ultra-fast rotators within 10pc (Delfosseetal. 1998), was Of the 59 remainingunresolvedobjects, 54 have some kind of firstresolvedbyBeuzitetal.(2004)intoapairseparatedby publishedspectral type information.We list their basic proper- only0.17arcsec.Montesetal.(2001)classifiedthebinaryas tiesinTables1and2,whereweprovidetheirTycho-2identifi- amemberoftheyoungdisc(τ∼600Ma). cation,coordinates,Tycho-2V and2MASSJHK magnitudes, T s total proper motion µ, parallax (from vanLeeuwen 2007 in all Theremainingfiveunknownstars,listedinTable3andplot- buttwodwarfs),spectraltype,mostcommonname,andatleast tedin Fig. 1with filled (blue)circles,havenoHipparcosentry oneofthemostrepresentativereferences. and haveneverbeen reportedin the literature.Actually, oneof 2 F.M.Jime´nez-Estebanetal.:Redhighproper-motionobjectsinTycho-2and2MASS Fig.1. Tycho-2/2MASSreducedproper motion diagram(H versus V −K , where H = V +5logµ+5). Objects selected VT T S VT T forfollow-upareredwardsofthedashedline.Previouslyunreportedredhighproper-motionobjectsaredepictedwith[blue]filled circles,already-knownobjectswith[red]opensymbols(giantswithtriangles,dwarfswithsquares),binarysystemsunresolvedby 2MASS with [black] crosses, and objects with wrong proper motion with [black] sails. The remaining objects bluewards of the dashed line are markedwith small dots. The dwarf located halfwaybetween giants (to the top) and the remainingdwarfs (to the bottom)isBD–211074BC.ComparethisdiagramwiththeoneinFig.2ofJime´nez-Estebanetal.(2011). themhasaBonnerDurchmusterungentry(Scho¨nfeld1886),but 2.3.VirtualObservatoryanalysis ithasgonewithoutbeingnoticedforover120years.Fornam- 2.3.1. Spectralenergydistributions ingthestars,wefollowedthe“Ruber”(redinLatin)nomencla- ture introducedby Caballero&Solano(2008) and followedby Another way to obtain information of the Ruber objects is Caballero(2009).OurnewRuberobjectsgofromthefourthto by analysing their spectral energy distributions (SEDs). We theeighthinthisseries. searched for additional photometric data of the five Ruber ob- jects using the “all-VO Discovery tool” of Aladin sky atlas The five new red high proper-motion objects fall between (Bonnareletal. 2000). This utility allows the user to query the giant and (ordinary) dwarf branches in the reduced proper a large number of photometric catalogues in a convenient motion-colourdiagram.AretheRuberobjectsunresolvedbinary way. Besides Tycho-2 and 2MASS, we collected observa- dwarfsintheβPictorismovinggroup,suchasBD–211074BC, tional data from the following astrophotometric catalogues: or peculiar underluminousgiants? To shed some light on their UCAC3 (Zachariasetal. 2010), DENIS (Epchteinetal. 1997), nature,wefirstanalysedtheirnear-infraredcolours. WISE(Wrightetal.2010),GLIMPSE(Churchwelletal.2009), MSX6C (Eganetal. 2003), AKARI/IRC (Ishiharaetal. 2010), Figure2 shows the location of our sources in an H − and IRAS (Beichmanetal. 1988). Table 3 compiles all this in- K vs.J − H colour-colour diagram, which is an excellent di- formation. s agnostic tool for distinguishing between red giants and dwarfs We took advantage of another VO tool, VOSA4 (VO SED (Bessell&Brett1988). Allfifty Mgiantsin Table1areclearly Analyzer;Bayoetal.2008),tofittheobservedSEDstotheoret- segregatedfromthefourMdwarfsinTable2,whichmatchtheir icalmodelsavailableattheVO.VOSAallowstheusertoquery, expected intrinsic colours. The five new Ruber objects are lo- inanautomaticandtransparentway,differentcollectionsofthe- cated in the giant region, indicating that they are probably M giantswithveryhightangentialvelocities. 4 http://svo.cab.inta-csic.es/theory/vosa 3 F.M.Jime´nez-Estebanetal.:Redhighproper-motionobjectsinTycho-2and2MASS Fig.2.SameasFig.1butforthenear-infraredcolour-colourdiagram.Dashedandcontinuouslinesdepicttheintrinsiccoloursof M dwarfs and giants, respectively (Bessell&Brett 1988). The two reddest dwarfs, QY Aur AB and YZ CMi AB, have almost coincidentnear-infraredcolours. oretical models, calculate their synthetic photometry, and per- 2.3.2. Photometricvariability forma statisticaltestto determinewhichmodelreproducesthe Another piece of information that may help in classifying the observeddatabest. five Ruber stars in Table 3 is their photometric variability, which is often detected in red giant stars and in magnetically- active field M dwarfs. In general, active M dwarfs rotate fast TofittheSEDsofourRuberobjects,weusedtheNextGen (Stauffer&Hartmann1986;Bouvieretal.1993;Delfosseetal. collectionofstellaratmospheremodels(Hauschildtetal.1999) 1998; Rockenfelleretal. 2006), while giants pulsate with and solar metallicity. The effective temperatures(Teff) and sur- long periods (Stebbins&Huffer 1930; Percy&Polano 1998; facegravities(logg)obtainedwithVOSArangedbetween2900 Koen&Eyer2002;Catelan2009).Periods,ifdetected,mayalso and3400K andbetween3.5and4.0,respectively(see the bot- helpdifferentiatethetwokindsofobjects. tom ofTable 3).The accuracyin determiningthese parameters WesearchedintheAllSkyAutomatedSurvey(ASAS)cata- wassetbythemodelgridsizeto100KinTeff and0.5inlogg. logueofvariablestars(Pojman´ski2002)fordataonourobjects. Estimatedtemperaturesandsurfacegravitiescorrespondtolate- Oneof them,Ruber4 (ASAS152557–4844.6),was catalogued type M stars with logg midway between dwarfs and giants. In tohaveaperiodofphotometricvariabilityP=43dwithanam- Figure3weplotthetheoreticalfittingoftheobservationalSEDs. plitudeof0.30magintheVband.Tabulatedvariabilitytypewas A VOSA upgrade,with new gridsof theoreticalisochronesfor “MISC/SR”(“mostlysemi-regular”withtimescalesofvariation dwarfandgiantstarswithlowerTeffsthanthoseprovidedbythe between10and200d). Kuruczmodelsandwideintervalsofmetallicity,iscurrentlyun- Todoourowntime-seriesanalysis,welookedfortheorig- der developmentby the Spanish Virtual Observatoryteam but, inal light-curve data set of the five Ruber targets at the ASAS unfortunately, was not available to us at the time of writing. webpage5 asinCaballeroetal.(2010).Thelightcurves,which Nevertheless,theeffectofthemetallicityontheoverallSEDsof contain approximately between 400 and 700 data points after dwarfswouldprobablybenotstrongenoughtoproduceanotice- discardinglow-qualitymeasurements,spanfromFebruary2001 ablechangeintheTeffandloggfitvalues,especiallywhenfitting toOctober2009andaredisplayedinFig.4.Byeye,moststars broad-band photometry (Bonfilsetal. 2005; Rojas-Ayalaetal. 2011;Schlaufman&Laughlin2010;Woolfetal.2009). 5 http://www.astrouw.edu.pl/asas/ 4 F.M.Jime´nez-Estebanetal.:Redhighproper-motionobjectsinTycho-2and2MASS Fig.3.TheoreticalSEDfitsofRuber4to8,fromtoptobottom. Fig.4. ASAS V-band light curvesof Ruber4 to 8, from top to Solid lines represent the NextGen models for solar metallicity bottom. that best fit the observational data. Filled [red] circles indicate the observational photometric data used for the fit. Error bars areusuallysmallerthanthesizeofthecircles. the abnormalobserved V − K colours with respect to the re- T s ducedpropermotions. We performed the same variability analysis as in display amplitudes of variability between two and three times Jime´nez-Estebanetal. (2006), using a sinusoidal light curve the uncertainty of the photometry. In particular, for Ruber4, as a first approximationof the real one. The least mean square which is the most variable star in our small sample, the mean method (Stellingwerf1978) was applied for a range of periods error bar and standard deviation of the light curve are 40 and from0.1dto10,000d,andthequalityofthefitwasdetermined 116mmag, respectively. The photometric variability (Tycho-2, with a normalisedχ2 test, weightingeach observationwith the 2MASS,ASAS dataare notcoincidentin time) cannotexplain inverseofthesquareoftheobservationalerror. 5 F.M.Jime´nez-Estebanetal.:Redhighproper-motionobjectsinTycho-2and2MASS Fig.5.PeriodogramsoftheASASlightcurvedofRuber4to8, Fig.6. ASAS V-band light curves as a function of phase of fromtoptobottom. Ruber4to8,fromtoptobottom.Continue(red)linesshowthe correspondingsymmetricsinusoidalmodellightcurvefit.Light curvesofRuber5and8arehighlytentative. TheperiodogramsforRuber4to8areshowninFig.5.Asil- lustratedbythefirstpanel,apartfromconfirmingthePojman´ski (2002) period of Ruber4 within uncertainties(P=42.3±0.1d), longerthanthetimecoverageofthemonitoring,theyshouldbe we report on the discovery of a long secondary period (LSP) considered highly tentative so need to be confirmed. All peri- at around 520d. A similar period (P∼420d) was found for odograms show a similar pattern around 300–400d, which is Ruber7, while Ruber6 displayed a period longer than half the dueto the frequencyof theASAS observations,with blocksof totaltimecoverageof3150–3200d(cf.bottomofTable3).For dataseparatedbyaboutayear. Ruber5 and Ruber8, two extremely long periods were found The presence of LSPs, as in the case of Ruber4, is very (P∼4000and∼7000d,respectively).Sincetheyaremuchmore common among pulsating red giant stars. At least one third 6 F.M.Jime´nez-Estebanetal.:Redhighproper-motionobjectsinTycho-2and2MASS of the semi-regular variables in the solar vicinity are in fact SomethingsimilarhappenstoHD98500andHD122132.After multiperiodic, with an LSP roughly one order of magnitude consulting additionalM giant standards in Danks&Dennefeld longer than the primary period of pulsation (Woodetal. 2004; (1994), we gave the M2III spectral type, with one dex uncer- Percyetal. 2004). In spite of that, LSP is the only type of tainty, to both Ruber7 and TYC 6238−480−1. However, the large-amplitude stellar variability that remains completely un- spectrumofRuber8deservedfurtherattention. explained. Woodetal. (2004) discuss several mechanisms, but ThepseudocontinuumofRuber8reasonablyfitsthatofother findnoclearexplanationforany,andspeculatethatasymptotic M2 giants. However,its absorptionbandsand (alkali)lines are giantbranchstarswithLSPmaybetheprecursorsofasymmetric far less marked, so we gave it the “wk” code of spectral pecu- planetary nebulae. More recent studies (Soszyn´skietal. 2007; liarity (from “weak lines”). This weakness of bands and lines Soszyn´ski2007)havepointedtowardsabinaryorigin.Thislast maybeexplainedbyaverylowmetallicity.Metal-poorstarsare explanationisconsistentwiththelocationofRuber4 inthere- thought to be the survivors of the earliest generations of stars. ducedpropermotiondiagram,whereothermultiplestellarsys- Theirstudyhelpstoputconstraints,forexample,onthechemi- temarefound. calhistoryoftheMilkyWay(Holleketal.2011;Cayrel2006). Another peculiar object is Ruber6, which presents an ex- Bright low-metallicity stars are very rare, so if the metal-poor tremely long period (P∼2200d) with low-amplitude variabil- natureofRuber8isconfirmed,itwouldbecomeanexcellenttar- ity (∼0.07mag), and relatively blue near-infrared colour (H − getfordetailed follow-upstudies.Until now,we havefailed to K ∼0.35mag). We did not find any other star with a longer obtaina higherresolutionspectrumofRuber8,fromwhichwe s period reported in the bibliography. Two kinds of red gi- wouldmeasureradialvelocities,determinegalactocentricspace ant stars could present such long periods: Mira-like variables velocitiesUVW, andassign membershipfor the Galactic kine- (Engelsetal. 1983; Jime´nez-Estebanetal. 2006) and semi- maticcomponents(i.e.thin/thickdisc,halo). regular variables (e.g. Glass&vanLeeuwen 2007, and refer- ences therein). In the first case, stars present very red near- 3. Summaryandfinalremarks infrared colours (H − K >3mag) and a large amplitude of s variability (>1mag); in the second case, the stars have bluer We identified red high proper-motion objects in the Tycho-2 colours and present lower amplitudes. Ruber6 may be a semi- and 2MASS catalogues using Virtual Observatorytools, in the regularvariablestarwithanextremelylongperiodandverylow- same way as Jime´nez-Estebanetal. (2011) did with blue ob- amplitudevariability. jects. After discarding six sources with erroneous proper mo- tions and eight close binaries, we got a sample of 59 objects with proper motions larger than 50masyr−1 and red colours 2.4.Spectroscopy V −K >5.5–6.0mag.Ofthem,54wereknowntobeM-typegi- T s ThebestwaytoascertainthenatureoftheRuber4to8sources antsanddwarfs.Theotherfive,namelyRuber4to8,arestudied is with spectroscopic data. Consequently, we used another VO inthisworkforthefirsttime. tool,VOSED6 (Gutie´rrezetal.2008),tolookforspectrainthe We collected and analysed all available data of the Ruber VO archives. Developed by the Spanish Virtual Observatory, objects. From SED theoretical fits, we estimated temperatures VOSED allows the user to gather spectroscopic information that correspond to late-type M stars and surface gravities mid- available throughout the VO. Unfortunately, no spectroscopic way between dwarfs and giants (subject to uncertainties in the datawerefound. usedmodels),butfromnear-infraredcolours,weconcludedthat To complement our VO analysis, we collected low- allofthemarelikelyredgiantswithhightangentialvelocities. resolution optical spectra for Ruber7 and 8, TYC 6238–480– The analysis of their ASAS light curves yielded interest- 1 (the discarded low-proper motion giant in Section 2.1) and ing results.We established reliableperiodsforthree ofthe five elevencomparisonstarswithagroundtelescope.On2011Mar Ruber objects. In the case of Ruber4, we also found a sec- 20,weusedtheCalarAltoFaintObjectSpectrograph7(CAFOS) ondaryperiodthatisroughlytentimeslongerthantheprimary at the 2.2m telescope on the Calar Alto Observatory,Almer´ıa, one.Ruber6presentsanextremelylongperiod(P∼2200d),al- Spain, with the grism Green–100 and the SITe1d detector of thoughwithalargeerrorduetotheshorttimecoverage.Ruber5 24µm pixels. The resulting resolution was only R∼1600, but and8presentevenlongerperiods,buttheyareuncertain. the wavelength coverage was very wide, from 4900 to 7800Å With the help of low-resolution spectra obtained with withoutvignetting.Neededexposuretimeswereintherangeof CAFOS on Calar Alto, we determined the spectral type of 100–200s.NootherRuberstarscouldbeobservedbecauseof Ruber7 and8 atM2III:and M2III:wk,respectively.Thespec- theirlowdeclinationforCalarAlto. trumofRuber8displayslowmarkedabsorptionbandsandlines, The eleven comparison stars were seven nearby late-type probablyduetoametal-poornature. dwarfsandfourM-typegiants.Wereduced,extracted,andcor- Becauseoftheirbrightness,thefiveRuberobjectscanserve rected all the spectra for instrumental response (with the stan- asusefultargetsfordetailedstudiesofold-populationgiants. dard star Feige 34) using standard tasks within the IRAF envi- Acknowledgements. WeareindebttoD.Montes forsupervisingthespectro- ronment.ThefourteenspectraareshowninFig.7. scopicobservationsonCalarAlto,toA.Klutschfortryingtogetadditionalspec- From the visual inspection of the pseudocontinuum of the traforRuberobjects,andtoC.Rodrigoforclarifyingwhichmodelsareactually CAFOSspectra,weconcludedthatbothRuber7and8areinthe availableinVOSA.ThisresearchmadeuseofVOSAandVOSED,developedby theSpanishVirtualObservatorythroughgrantsAyA2008-02156andRI031675, giantclass.Therefore,weestimatedtheirspectraltypesfromthe andofAladinandSIMBADdevelopedattheCentredeDonne´esastronomiques comparisonwith the fourotherobservedgiants.Unfortunately, deStrasbourg,France.FinancialsupportwasprovidedbytheSpanishMinisterio their spectral type determinations do not seem to be fully re- deCienciaeInnovacio´n,UniversidadComplutensedeMadridandComunidad liable: the spectra of BW CVn and BZ CVn are identical, Auto´noma de Madrid under grants CSD2006-00070 (under the Consolider- but the reported spectral types are different (M1III vs. M3III). Ingenio 2010 Programme First Science with the Gran Telescopio Canarias), AyA2008-00695, AyA2008-06423-C03-03, and SP2009/ESP-1496. This re- searchmadeuseoftheNASA/IPACInfraredScienceArchive, whichisoper- 6 http://sdc.cab.inta-csic.es/vosed ated bytheJetPropulsion Laboratory, California Institute ofTechnology, un- 7 http://www.caha.es/alises/cafos/cafos.html dercontractwiththeNationalAeronauticsandSpaceAdministration.Basedon 7 F.M.Jime´nez-Estebanetal.:Redhighproper-motionobjectsinTycho-2and2MASS 4 4 3.5 3.5 3 3 2.5 2.5 x x u u d fl d fl e e s s ali 2 ali 2 m m or or N N 1.5 1.5 1 1 0.5 0.5 0 0 4500 5000 5500 6000 6500 7000 7500 8000 8500 4500 5000 5500 6000 6500 7000 7500 8000 8500 λ [A] λ [A] Fig.7.CAFOSspectraofRuber7and8,TYC6238–480–1,andelevencomparisonstars.Leftpanel(dwarfs):fromtoptobottom, BD+39 2801 (K5V), HD 147379 A (K7V), GJ 1170 (M1V), HD 95735 (M2V), GJ 4040 (M3V), GJ 687 (M3V), and GJ 1101 (M3.5Ve). All the spectral types are from Hawleyetal. (1996). Right panel (giants): from top to bottom, HD 98500 (M0III; Moore&Paddock1950), HD 122132(M2III;Moore&Paddock1950), Ruber8 [in red],Ruber7 [in red], TYC 6238–480–1[in magenta],BWCVn(M1III;Upgren1960),andBZCVn(M3III;Schild1973). observationscollectedattheCentroAstrono´micoHispanoAlema´n(CAHA)at Beichman,C.A.,Neugebauer,G.,Habing,H.J.,Clegg,P.E.,&Chester,T.J. CalarAlto,operatedjointlybytheMax-PlanckInstitutfu¨rAstronomieandthe 1988,inInfraredastronomicalsatellite(IRAS)catalogsandatlases.Volume InstitutodeAstrof´ısicadeAndaluc´ıa(CSIC). 1:Explanatorysupplement Benz,A.O.&Alef,W.1991,A&A,252,L19 Bergeat,J.,Knapik,A.,&Rutily,B.2002,A&A,390,987 Bessell,M.S.&Brett,J.M.1988,PASP,100,1134 References Beuzit,J.-L.,Se´gransan,D.,Forveille,T.,etal.2004,A&A,425,997 Blanco,V.M.&Mu¨nch,L.1955,Bolet´ındelosObservatoriosTonantzintlay Adams,W.S.,Joy,A.H.,&Humason,M.L.1926,ApJ,64,225 Tacubaya,2,17 Adelman,S.J.2001,BalticAstronomy,10,589 Bonfils,X.,Delfosse,X.,Udry,S.,etal.2005,A&A,442,635 Bayo,A.,Rodrigo,C.,BarradoyNavascue´s,D.,etal.2008,A&A,492,277 Bonnarel,F.,Fernique,P.,Bienayme´,O.,etal.2000,A&AS,143,33 Bedding,T.R.,Zijlstra,A.A.,Jones,A.,etal.2002,MNRAS,337,79 Bouvier,J.,Cabrit,S.,Ferna´ndez,M.,Mart´ın,E.L.,&Matthews,J.M.1993, Beers,T.C.,Drilling,J.S.,Rossi,S.,etal.2002,AJ,124,931 A&A,272,176 Begemann,B.,Dorschner,J.,Henning,T.,etal.1997,ApJ,476,199 8 F.M.Jime´nez-Estebanetal.:Redhighproper-motionobjectsinTycho-2and2MASS Caballero, J. A.2009, Multi-wavelength Astronomy and Virtual Observatory, Matsuura,M.,Yamamura,I.,Murakami,H.,Freund,M.M.,&Tanaka,M.1999, Proceedings of the EURO-VO Workshop, held at the European Space A&A,348,579 Astronomy Centre ofESA,Villafranca del Castillo, Spain, 1-3December, Matthews,L.D.,Libert,Y.,Ge´rard,E.,etal.2011,AJ,141,60 2008,eds.D.BainesandP.Osuna,publishedbytheEuropeanSpaceAgency, McGee,R.X.,Newton,L.M.,&Brooks,J.W.1977,MNRAS,180,91P p.3 McWilliam,A.&Rich,R.M.1994,ApJS,91,749 Caballero,J.A.2010,A&A,514,A18 Mennesson,B.,Koresko,C.,Creech-Eakman,M.J.,etal.2005,ApJ,634,L169 Caballero,J.A.,Cornide,M.,&deCastro,E.2010,AstronomischeNachrichten, Montes,D.,Lo´pez-Santiago,J.,Ga´lvez,M.C.,etal.2001,MNRAS,328,45 331,257 Moore,J.H.&Paddock,G.F.1950,ApJ,112,48 Caballero,J.A.&Solano,E.2008,A&A,485,931 Olnon,F.M.,Raimond,E.,Neugebauer,G.,etal.1986,A&AS,65,607 Campbell,W.W.1899,ApJ,9,31 Oreiro,R.,Rodr´ıguez-Lo´pez,C.,Solano,E.,etal.2011,A&A,530,A2 Carney,B.W.&Latham,D.W.1986,AJ,92,60 Percy,J.R.,Bakos,A.G.,Besla,G.,etal.2004,inAstronomicalSocietyofthe Catelan,M.2009,Ap&SS,320,261 PacificConferenceSeries,Vol.310,IAUColloq.193:VariableStarsinthe Cayrel,R.2006,ReportsonProgressinPhysics,69,2823 LocalGroup,ed.D.W.Kurtz&K.R.Pollard,348 Chen,P.S.,Szczerba,R.,Kwok,S.,&Volk,K.2001,A&A,368,1006 Percy,J.R.,Landis,H.J.,&Milton,R.E.1989,PASP,101,893 Churchwell,E.,Babler,B.L.,Meade,M.R.,etal.2009,PASP,121,213 Percy, J. R. & Polano, S. 1998, in Astronomical Society of the Pacific Cool,R.J.,Howell,S.B.,Pen˜a,M.,Adamson,A.J.,&Thompson,R.R.2005, Conference Series, Vol. 135, A Half Century of Stellar Pulsation PASP,117,462 Interpretation,ed.P.A.Bradley&J.A.Guzik,249 Cotton,W.D.,Ragland,S.,Pluzhnik,E.A.,etal.2010,ApJS,188,506 Pettersen,B.R.1975,A&A,41,87 Curtiss,R.H.1904,ApJ,20,232 Pickering,E.C.,Bailey,S.I.,Fleming,W.P.,Leland,E.F.,&Wells,L.D.1898, daSilva,L.,Torres,C.A.O.,deLaReza,R.,etal.2009,A&A,508,833 ApJ,7,208 Danks,A.C.&Dennefeld,M.1994,PASP,106,382 Platais,I.,Pourbaix,D.,Jorissen,A.,etal.2003,A&A,397,997 Delfosse,X.,Forveille,T.,Perrier,C.,&Mayor,M.1998,A&A,331,581 Pojman´ski,G.2002,ActaAstron.,52,397 Delorme,P.,Delfosse,X.,Albert,L.,etal.2008,A&A,482,961 Quirrenbach, A., Amado, P. J.,Mandel, H., et al. 2010, in Society ofPhoto- Donner.1935,MmRAS,65,51 Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7735, Egan, M. P., Price, S. D., & Kraemer, K. E. 2003, in The Midcourse Space Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Experiment(MSX)PointSourceCatalogVersion2.3 Series Eggen,O.J.1973,MNRAS,164,423 Raassen,A.J.J.,Mitra-Kraev,U.,&Gu¨del,M.2007,MNRAS,379,1075 Eggen,O.J.&Stokes,N.R.1970,ApJ,161,199 Ram´ırez,S.V.,Depoy,D.L.,Frogel,J.A.,Sellgren,K.,&Blum,R.D.1997, Engels,D.,Kreysa,E.,Schultz,G.V.,&Sherwood,W.A.1983,A&A,124,123 AJ,113,1411 Epchtein,N.,deBatz,B.,Capoani,L.,etal.1997,TheMessenger,87,27 Reid,I.N.,Cruz,K.L.,Allen,P.,etal.2004,AJ,128,463 Espin,T.E.1892,AstronomischeNachrichten,129,297 Reid,I.N.,Hawley,S.L.,&Gizis,J.E.1995,AJ,110,1838 Famaey,B.,Jorissen,A.,Luri,X.,etal.2005,A&A,430,165 Reiners,A.&Basri,G.2010,ApJ,710,924 Feast,M.W.,Woolley,R.,&Yilmaz,N.1972,MNRAS,158,23 Robb, R. M., Balam, D. D., & Greimel, R. 1999, Information Bulletin on Fleming, M. 1892, Astronomy and Astro-Physics (formerly The Sidereal VariableStars,4714,1 Messenger),11,765 Rocha-Pinto,H.J.,Flynn,C.,Scalo,J.,etal.2004,A&A,423,517 Glass,I.S.&vanLeeuwen,F.2007,MNRAS,378,1543 Rockenfeller,B.,Bailer-Jones,C.A.L.,&Mundt,R.2006,A&A,448,1111 Guglielmo,F.,Epchtein,N.,Arditti,F.,&Sevre,F.1997,A&AS,122,489 Rojas-Ayala, B.,Covey, K.R.,Muirhead, P.S.,&Lloyd, J.P.2011,e-prints Gutie´rrez, R., Solano, E., Delgado, A., Sarro, L. M., & Mer´ın, B. 2008, in arXiv:1112.4567 Astronomical Spectroscopy and Virtual Observatory, ed. M. Guainazzi & Ross,F.E.1937,AJ,46,157 P.Osuna,91 Ross,F.E.1939,AJ,48,10 Hacking,P.,Neugebauer,G.,Emerson,J.,etal.1985,PASP,97,616 Ruban, E. V., Arkharov, A. A., Hagen-Thorn, E. I., & Novikov, V. V. 2009, Hashimoto,O.1994,A&AS,107,445 Astrophysics,52,383 Hauschildt,P.H.,Allard,F.,&Baron,E.1999,ApJ,512,377 Sanner,F.1977,PASP,89,768 Hawley,S.L.,Gizis,J.E.,&Reid,I.N.1996,AJ,112,2799 Sanner,F.1978,ApJ,219,538 Hoffmeister,C.1933,AstronomischeNachrichten,247,281 Schild,R.E.1973,AJ,78,37 Høg,E.,Fabricius,C.,Makarov,V.V.,etal.2000,A&A,355,L27 Schlaufman,K.C.&Laughlin,G.2010,A&A,519,A105 Hollek,J.K.,Frebel,A.,Roederer,I.U.,etal.2011,ApJ,742,54 Scho¨nfeld, E.1886,inBonnerDurchmusterungdesnordlichen Himmels,eds. Houk, N. & Cowley, A. P. 1975, University of Michigan Catalogue of two- MarcusandWeber’sVerlag,Bonn dimensionalspectraltypesfortheHDstars.VolumeI.Declinations -90◦ to Sivagnanam,P.2004,MNRAS,347,1084 -53◦,ed.Houk,N.&Cowley,A.P. Skrutskie,M.F.,Cutri,R.M.,Stiening,R.,etal.2006,AJ,131,1163 Ishihara,D.,Onaka,T.,Kataza,H.,etal.2010,A&A,514,A1 Solowieff,A.W.1928,AstronomischeNachrichten,233,367 Jao,W.-C.,Henry,T.J.,Subasavage,J.P.,etal.2003,AJ,125,332 Soszyn´ski,I.2007,ApJ,660,1486 Jime´nez-Esteban,F.M.,Caballero,J.A.,&Solano,E.2011,A&A,525,A29 Soszyn´ski,I.,Dziembowski,W.A.,Udalski,A.,etal.2007,ActaAstron.,57, Jime´nez-Esteban, F.M., Garc´ıa-Lario, P.,Engels, D., & Manchado, A. 2006, 201 A&A,458,533 Stauffer,J.R.&Hartmann,L.W.1986,ApJS,61,531 Jura,M.&Kleinmann,S.G.1992,ApJS,83,329 Stebbins,J.&Huffer,C.M.1930,Publications oftheWashburnObservatory, Kahler,S.,Golub,L.,Harnden,F.R.,etal.1982,ApJ,252,239 15,140 Kirkpatrick,J.D.,Cushing,M.C.,Gelino,C.R.,etal.2011,ApJS,197,19 Stellingwerf,R.F.1978,ApJ,224,953 Kiss,L.L.&Bedding,T.R.2003,MNRAS,343,L79 Stephenson,C.B.1986,AJ,91,144 Koen,C.&Eyer,L.2002,MNRAS,331,45 Stokes,N.R.1971,MNRAS,152,165 Konstantinova-Antova,R.,Aurie`re,M.,Charbonnel,C.,etal.2010,A&A,524, Strohmeier,W.1966,InformationBulletinonVariableStars,158,1 A57 Tomkin,J.&Pettersen,B.R.1986,AJ,92,1424 Kowalski,A.F.,Hawley,S.L.,Holtzman,J.A.,Wisniewski,J.P.,&Hilton,E.J. Tscherny,S.D.1941,AJ,49,107 2010,ApJ,714,L98 Upgren,A.R.1960,AJ,65,644 Kundu,M.R.,White,S.M.,Jackson,P.D.,&Pallavicini,R.1988,A&A,195, vanLeeuwen,F.2007,A&A,474,653 159 Vennes,S.,Kawka,A.,&Ne´meth,P.2011,MNRAS,410,2095 Kunkel,W.E.1969,Nature,222,1129 Vyssotsky,A.N.1946,PASP,58,54 Kwok,S.,Volk,K.,&Bidelman,W.P.1997,ApJS,112,557 Whitelock,P.,Marang,F.,&Feast,M.2000,MNRAS,319,728 Lafrenie`re,D.,Doyon,R.,Marois,C.,etal.2007,ApJ,670,1367 Winters,J.M.,LeBertre,T.,Jeong,K.S.,Nyman,L.-Å.,&Epchtein,N.2003, Lambert,D.L.,Gustafsson,B.,Eriksson,K.,&Hinkle,K.H.1986,ApJS,62, A&A,409,715 373 Wood,P.R.&Cahn,J.H.1977,ApJ,211,499 LeBouquin,J.-B.,Abuter,R.,Haguenauer,P.,etal.2009,A&A,493,747 Wood,P.R.,Olivier,E.A.,&Kawaler,S.D.2004,ApJ,604,800 Lebzelter,T.&Kiss,L.L.2001,A&A,380,388 Woolf,V.M.,Le´pine,S.,&Wallerstein,G.2009,PASP,121,117 Le´pine,S.&Gaidos,E.2011,AJ,142,138 Wright,E.L.,Eisenhardt,P.R.M.,Mainzer,A.K.,etal.2010,AJ,140,1868 Libert,Y.,LeBertre,T.,Ge´rard,E.,&Winters,J.M.2008,A&A,491,789 Zacharias,N.,Finch,C.,Girard,T.,etal.2010,AJ,139,2184 Mahadevan,S.,Ramsey,L.,Wright,J.,etal.2010,inSocietyofPhoto-Optical Instrumentation Engineers(SPIE)ConferenceSeries,Vol.7735,Societyof Photo-OpticalInstrumentationEngineers(SPIE)ConferenceSeries 9 1 Table1.Already-knownbrightredhighproper-motionobjects:giants. 0 TYC α δ V J H K µ π Spectral Name Ref.a T s (J2000) (J2000) [mag] [mag] [mag] [mag] [masa−1] [mas] type 5846–131–1 002146.27 –200328.9 5.926±0.009 0.5: –0.5: –0.8: 64.6±1.0 3.7±0.5 M5–6SIIe TCet 1 4681–469–1 011414.83 –021046.2 8.694±0.014 3.0: 2.0: 1.7: 60.4±1.1 ... M4III ANCet 2 2308–2170–1 015803.77 +310803.8 7.157±0.010 1.5: 0.4: 0.2: 62.8±0.8 5.1±0.5 M5III AATri 2 5278–1494–1 020026.82 –083125.9 5.656±0.009 0.8: –0.2: –0.5: 88.7±0.8 6.8±0.3 M3III ARCet 3 630–507–1 020238.63 +074036.5 9.96±0.03 1.4: 0.4: 0.0: 54.3±1.7 ... M7III BD+06319 4 4693–1144–1 021920.79 –025839.5 6.654±0.010 –0.7: –1.6: –2.2: 238.6±0.7 10.9±1.2 M2–7IIIe+DA MiraCetAB 5 F 641–24–1 025346.22 +092008.9 6.816±0.011 1.7: 0.6: 0.5: 61.5±0.8 5.8±0.6 M6III EGCet 6 . M 8054–1103–1 025352.77 –495322.7 8.253±0.013 0.7: –0.1: –0.6: 133±2 4.8±1.0 M7IIIe RHor 7 . 5338–890–1 051122.87 –115056.7 5.869±0.010 –0.2: –1.1: –1.4: 64.5±0.9 6.7±0.4 M6III RXLep 8 Jim 6530–1428–1 065300.30 –265727.5 6.586±0.009 1.6: 0.6: 0.3: 66.1±1.3 3.6±0.5 M6III KXCMa 9 ´e n 87962412––118446–11–1 007711931342..6352 ––647413181253..21 84..177647±±00..001029 –31..41:: –21..59:: –22..13:: 34520..98±±11..20 152..64±±10..05 MM45IIIIIIe WL2WPuVpol 1101 ez-E s 2451–1111–1 072045.69 +312732.9 8.81±0.02 3.6: 2.8: 2.4: 64.2±1.3 ... M5:III BD+311540 12 te b 9381–22–1 075521.37 –762952.3 8.786±0.014 3.4: 2.4: 2.0: 54.0±1.3 ... M5III HD66424 2 a n 6015–2511–1 083953.54 –171810.7 6.846±0.011 0.6: –0.3: –0.6: 151.7±1.3 6.4±0.4 M6III AKHya 13 e t 818–577–1 090826.54 +131313.6 9.271±0.016 1.4: 0.4: 0.1: 60.7±1.2 4.1±0.9 M6III CWCnc 14 a 8968–918–1 103238.42 –661054.3 8.971±0.015 2.7: 1.8: 1.4: 50.8±1.4 ... M6III: HD91600 2 l.:R 5495–421–1 103751.80 –120115.3 8.997±0.017 1.9: 1.0: 0.7: 54±2 ... M6III FFHya 15 ed 6653–720–1 111437.78 –260430.8 7.739±0.011 2.7: 1.8: 1.5: 65.3±1.4 ... M4III HYHya 16 h ig 7202–37–1 111850.10 –302825.4 10.05±0.03 2.9: 2.0: 1.6: 60.7±1.7 ... M8III V444Hya 17 h 8972–291–1 113734.06 –605411.6 6.764±0.010 1.2: 0.3: 0.0: 67.3±1.3 6.1±0.5 M4III V913Cen 18 pr o 292–330–1 123021.01 +042459.1 8.328±0.015 0.5: –0.4: –0.7: 53.2±1.2 5.5±0.7 M7III BKVir 19 p e 5540–333–1 131120.83 –103050.8 7.640±0.013 2.8: 1.9: 1.6: 55.7±1.2 ... Mb... V339Vir 20 r- m 899–580–1 133752.93 +132648.4 8.614±0.015 2.5: 1.6: 1.3: 58.9±0.9 4.1±0.7 M6III DHBoo 21 o 8269–1422–1 133959.81 –495659.8 6.044±0.009 0.5: –0.6: –0.8: 101.0±0.9 6.4±0.3 M6III V744Cen 22 tio n 6728–19–1 134902.00 –282203.5 7.788±0.012 –1.7: –2.7: –3.2: 78.3±1.3 9.6±1.1 M8IIIe WHya 23 o b 7287–1891–1 134926.72 –342702.8 4.416±0.009 –0.6: –1.5: –1.8: 73.9±1.1 17.8±0.2 M4.5III gCen 24 je 1467–355–1 135355.19 +171650.8 9.58±0.03 4.1: 3.1: 2.8: 50.7±1.2 ... M5III XZBoo 25 cts 6724–764–1 135519.31 –262557.4 8.018±0.012 2.5: 1.6: 1.3: 83.0±1.2 0.3±0.6 M5III V349Hya 26 in 9427–2476–1 140519.88 –764748.3 5.791±0.009 –0.7: –1.7: –2.1: 94.4±0.7 8.8±0.5 M6.5III θAps 27 T y 1478–509–1 144605.95 +150754.4 6.021±0.010 0.5: –0.4: –0.7: 87.7±0.9 4.0±0.4 M5IIIab EKBoo 28 ch o 5594–455–1 151921.81 –090847.5 7.223±0.011 2.2: 1.4: 1.1: 51.8±1.1 2.8±1.0 M4III FZLib 29 - 2 2578–824–1 155830.77 +360119.7 7.606±0.010 2.5: 1.6: 1.3: 51.6±1.4 3.0±0.4 M7III RSCrB 30 a n 3491–136–1 160239.17 +471425.3 6.624±0.010 –0.1: –0.9: –1.3: 94.8±1.1 7.3±0.4 M6IIIe XHer 31 d 2 4190–653–1 163500.72 +602805.3 7.498±0.011 2.7: 1.7: 1.5: 58.0±1.3 2.9±0.5 M4IIIe TXDra 32 M 8717–558–1 164219.86 –552303.7 8.828±0.015 3.6: 2.6: 2.2: 71±2 ... M3–4II: HD150184 33 A S 5087–261–1 175303.32 –023445.6 7.710±0.012 1.7: 0.8: 0.5: 56.9±0.9 2.7±0.7 M6III V533Oph 34 S 1029–3054–1 183957.12 +095821.9 8.056±0.012 2.0: 1.2: 0.9: 54±2 ... M6IIIe HD172450 35 3131–2155–1 185520.10 +435645.9 4.355±0.009 –0.7: –1.6: –1.8: 83.7±0.7 10.94±0.12 M5III RLyr 36 461–458–1 185718.34 +064153.4 9.57±0.02 3.6: 2.5: 2.2: 65±2 ... M7III V840Aql 37 1040–241–1 190622.25 +081348.0 8.225±0.014 0.7: –0.4: –0.8: 72.2±1.6 2.4±0.9 M7IIIev RAql 38 8782–316–1 194313.64 –561537.0 7.914±0.011 2.1: 1.3: 0.9: 54.5±1.3 5.1±0.6 M5–M6III V341Tel 39 7942–935–1 195842.87 –415057.9 8.272±0.014 2.8: 2.0: 1.6: 58.0±1.1 2±2 M4IIIe RUSgr 40 6913–836–1 200655.25 –271329.8 8.179±0.012 –0.1: –1.1: –1.5: 51.3±1.6 5.1±0.6 M8III V1943Sgr 41 5743–34–1 201007.02 –103212.5 8.92±0.02 3.5: 2.5: 2.2: 53.5±1.3 ... M3III HD191429 42 1637–2033–1 203754.73 +181606.9 6.362±0.010 0.3: –0.8: –1.0: 72.1±1.0 8.6±0.5 M6III EUDel 43 4460–2400–1 210931.78 +682927.2 8.338±0.012 –0.5: –1.3: –1.8: 63.7±1.2 5.3±0.9 M7IIIe TCep 44

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.