ebook img

Identification of Gene Networks for Residual Feed Intake in Angus Cattle Using Genomic Prediction PDF

19 Pages·2016·1.35 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Identification of Gene Networks for Residual Feed Intake in Angus Cattle Using Genomic Prediction

RESEARCHARTICLE Identification of Gene Networks for Residual Feed Intake in Angus Cattle Using Genomic Prediction and RNA-seq KristinaL.Weber1*,BryanT.Welly2,AlisonL.VanEenennaam2,AmyE.Young2,Laercio R.Porto-Neto3,AntonioReverter3,GonzaloRincon1 1 VMRDGeneticsR&D,ZoetisInc.,Kalamazoo,MI,UnitedStatesofAmerica,2 DepartmentofAnimal Science,UniversityofCaliforniaDavis,Davis,CA,UnitedStatesofAmerica,3 CSIROAgriculture, QueenslandBiosciencePrecinct,St.Lucia,QLD,Australia *[email protected] Abstract Improvementinfeedconversionefficiencycanimprovethesustainabilityofbeefcattlepro- duction,butgenomicselectionforfeedefficiencyaffectsmanyunderlyingmolecularnet- OPENACCESS worksandphysiologicaltraits.Thisstudydescribesthedifferencesbetweensteerprogeny Citation:WeberKL,WellyBT,VanEenennaamAL, oftwoinfluentialAngusbullswithdivergentgenomicpredictionsforresidualfeedintake YoungAE,Porto-NetoLR,ReverterA,etal.(2016) IdentificationofGeneNetworksforResidualFeed (RFI).Eightsteerprogenyofeachsirewerephenotypedforgrowthandfeedintakefrom IntakeinAngusCattleUsingGenomicPredictionand 8mo.ofage(averageBW254kg,withameandifferencebetweensiregroupsof4.8kg) RNA-seq.PLoSONE11(3):e0152274.doi:10.1371/ untilslaughterat14–16mo.ofage(averageBW534kg,siregroupdifferenceof28.8kg). journal.pone.0152274 Terminalsamplesfrompituitarygland,skeletalmuscle,liver,adipose,andduodenumwere Editor:RamonaNatachaPENAiSUBIRÀ,University collectedfromeachsteerfortranscriptomesequencing.Geneexpressionnetworkswere ofLleida,SPAIN derivedusingpartialcorrelationandinformationtheory(PCIT),includingdifferentially Received:November9,2015 expressed(DE)genes,tissuespecific(TS)genes,transcriptionfactors(TF),andgenes Accepted:March12,2016 associatedwithRFIfromagenome-wideassociationstudy(GWAS).Relativetoprogenyof Published:March28,2016 thehighRFIsire,progenyofthelowRFIsirehad-0.56kg/dfinishingperiodRFI(P=0.05), -1.08finishingperiodfeedconversionratio(P=0.01),+3.3kg^0.75finishingperiodmeta- Copyright:©2016Weberetal.Thisisanopen accessarticledistributedunderthetermsofthe bolicmid-weight(MMW;P=0.04),+28.8kgfinalbodyweight(P=0.01),-12.9feedbunk CreativeCommonsAttributionLicense,whichpermits visitsperday(P=0.02)with+0.60min/visitduration(P=0.01),and+0.0045carcassspe- unrestricteduse,distribution,andreproductioninany cificgravity(weightinair/weightinair—weightinwater,apredictorofcarcassfatcontent;P medium,providedtheoriginalauthorandsourceare =0.03).RNA-seqidentified633DEgenesbetweensiregroupsamong17,016expressed credited. genes.PCITanalysisidentified>115,000significantco-expressioncorrelationsbetween DataAvailabilityStatement:Sequencedatafrom genesand25TFhubs,i.e.controllersofclustersofDE,TS,andGWASSNPgenes.Path- theRNA-seqexperimentisavailablefromtheNCBI SRAunderbioprojectPRJNA311009. wayanalysissuggestslowRFIbullprogenypossessheightenedgutinflammationand reducedfatdeposition.Thismulti-omicsanalysisshowshowdifferencesinRFIgenomic Funding:Fundingforthisstudywasprovided throughagrantfromZoetisInc.,#201224918.The breedingvaluescanimpactothertraitsandgeneco-expressionnetworks. funderprovidedsupportintheformofsalariesfor authors[GR,KW],butdidnothaveanyadditional roleinthestudydesign,datacollectionandanalysis, decisiontopublish,orpreparationofthemanuscript. Thespecificrolesoftheseauthorsarearticulatedin the‘authorcontributions’section. PLOSONE|DOI:10.1371/journal.pone.0152274 March28,2016 1/19 GeneNetworksforRFIinAngusCattle CompetingInterests:KWandGRarecurrently Introduction employedbythefundingagency,ZoetisInc.This Thelargestvariablecostsinbeefcattleproductionarefeedandland[1].Feedcostscanbe doesnotaltertheauthors'adherencetoPLOSONE policiesonsharingdataandmaterials. reducedbyimprovingfeedconversionefficiencywithoutsacrificingproductiontraits;one optionforthisistoconsiderresidualfeedintake(RFI;[2]).RFIisthedifferencebetween observedfeedintakeandexpectedintakebasedonbodysizeandrateofproduction(growth, milkproduction,etc.)overaperiodoftime.AnanimalwithalowRFIhasimprovedfeedcon- versionefficiencysinceitconsumeslessfeedthanexpectedforitsmaintenanceandgrowth requirements.TheheritabilityofRFIhasbeenestimatedtobeashighas42%ingrowingbeef cattle[3],suggestingithasastronggeneticcomponentandwouldrespondtoselectivebreed- ing.Whileitistooexpensiveforallbulltestingcentersandfeedlotstomeasureindividualfeed intakeinordertocalculateRFI,referencepopulationsofanimalspossessingbothRFIpheno- typesandhighdensitySNPgenotypeshavebeenusedtogeneratepredictionsoftotalgenetic merit[4]forRFIinmajorcattlebreeds[5–7].Thesegenomicpredictionscanbeaselection toolintheabsenceofdirectphenotypicdata. Theaimofthisstudywastodeterminewhetherprogenyofbullswithdivergentgenomic predictionsforRFIdisplayedphysiologicalandtranscriptomicdifferences.Weusedtwoinflu- entialAngusbullswithhighorlowgenomicallypredictedbreedingvaluesforRFItoproduce steerprogeny,whichwerephenotypedforRFIandalargevarietyoftraitsfrompost-weaning throughslaughterandcarcassevaluation.Keytissuesforgrowthandmetabolism,including thepituitary,skeletalmuscle,liver,visceraladipose,andduodenum,werecollectedforRNA- seqanalysis.Partialcorrelationandinformationtheory(PCIT)wasusedtogenerategenenet- works,linkingtissuespecific(TS)anddifferentiallyexpressed(DE)geneswithknowntran- scriptionfactors(TF)andgenesharboringSNPfromalargegenome-wideassociationstudy (GWAS)study.TheDEgenesandgenenetworksdescribedhereprovidenewinsightsintoreg- ulatoryandgeneexpressionpathwaysofRFI. Materials&Methods AnimalManagementandPhenotypeCollection UsinggenomicpredictionsforRFIinAnguscattle[8]producedbyZoetisInc.(FlorhamPark, NJ),twoinfluentialpurebredAngusbullswereselectedasbreedingsires.Onebullwaspredicted tobeinthetop1%intheAngusbreedin2010forRFI,andtheotherinthebottom10%,witha differenceinRFIbreedingvalueof0.32kgDM/dorapproximately3.5%ofdailyintake.Semen fromthesebullswasusedtoinseminateagroupofcommercialcowsofpredominantlyAngus backgroundattheUniversityofCaliforniaSierraFoothillResearchandExtensionCenter (BrownsValley,CA).Eightsteeroffspringpersirewereselectedforparticipationinthestudy, matchedbetweensiregroupsbyweaningweight.Eightanimalspergroupprovides80%power todetectdifferentialgeneexpressionwithfoldchangegreaterthanorequalto1.8forthetop 80%ofgenesbycoverageusingabiologicalcoefficientofvariationof0.4andalphaof0.05([9]). Theuseofhalf-siblingprogenyoftwobullsisexpectedtoreducethevariabilitywithinlowor highRFIpopulations,butdoesconfoundRFIwithothertraitsforwhichthebullsdiffer.Siredif- ferencesforotherbreedingvaluesareprovidedinS1Table.Basedonmolecularandtraditional breedingvalues,thelowRFIsireispredictedtohavelowerintake,higherweightsfrombirth throughtocarcass,largerheightandrib-eyearea,andreducedbackfatthickness. AlllivestockweremanagedunderprotocolsapprovedbytheInstitutionalAnimalCareand UseCommittee(IACUC)oftheUniversityofCalifornia.Postweaning,at~8moofage,the animalsweretransferredtoacommercialfeedlot(SnyderLivestockCo.,Yerington,NV;http:// www.slcnv.com/),wheretheywerehousedinasinglepenequippedwithGrowSafeunits PLOSONE|DOI:10.1371/journal.pone.0152274 March28,2016 2/19 GeneNetworksforRFIinAngusCattle (GrowSafeSystemLtd.,Airdrie,AB,Canada)fordailyfeedintakemeasurementoveraperiod of70d(henceforthreferredtoasthegrowingperiod)aftera14dadaptationperiod.Animals werefedastandardgrowerdiet(Table1).Feedwasprovideddailyinthemorningandpushed towardsthecattletwoadditionaltimesduringthedaytoencouragefeeding.Feedintakewas measuredcontinuouslytothe0.01kgbytheGrowSafesystem.Datafrom2dwereomitteddue tosystemfailure.Feedingbehaviorwasassessedbasedonfrequencyanddurationofbunkvis- its.Bodyweightsweretakenevery14d. Followingthegrowingperiod,theanimalsweretransferredtotheUniversityofCalifornia, DavisAnimalScienceFeedlotfacility,wheretheywereindividuallyhousedin7.5m2(1.5x5 m)pensforaminimumof70daftera14dadaptationperiodoruntiltheyreachedabodycon- ditionappropriateforslaughter(91donaverage),hereafterreferredtoasthefinishingperiod. Totalfeedofferedandamountrefusedweremeasuredto0.05kgprecision,anddailyintake wascalculatedasthedifferencebetweenofferedandrefusedfeedperanimalperday.Body weightsweremeasuredevery14dbeforeAMfeeding. Forfiverandomlyselecteddaysduringthefinishingperiod,thedailyrationwasprovided viaatie-stallGreenFeedunit(C-LockInc.,RapidCity,SD)inordertocollectmethane Table1. Compositionofthetotalmixedration(TMR)usedinthegrowingandfinishingperiods. Fin- ishingdietpossessedahigherproportionofgrainandhigherenergycontent(Mcal/kg). Item Growing Finishing,Mean(SE) Ingredient,% Cornsilage 32.56 Cornsteepwater 2.75 Rolledcorn 62.65 Distillersgrain 17.23 Almondhulls 20.00 Ricebran 18.28 Wheat 10.00 Alfalfahay 8.00 7.83 Oathay 2.00 3.91 Molasses 4.74 Condensedmolassessolubles 2.89 Whey 2.30 Fat 1.96 Limestone 1.28 Calciumcarbonate 0.50 Whitesalt 0.46 0.26 Suspensionagent 0.18 Magnesiumoxide 0.13 Traceminerals 0.06 Rumensin 0.02 0.01 Analyzed,%DMbasis Crudeprotein 11.36 13.30(0.86) Crudefiber 16.35 ADF 9.00(1.43) NDF 16.80(1.34) Calculated NEm[10],Mcal/kg 1.263 2.112(0.047) NEg[10],Mcal/kg 0.723 1.437(0.039) doi:10.1371/journal.pone.0152274.t001 PLOSONE|DOI:10.1371/journal.pone.0152274 March28,2016 3/19 GeneNetworksforRFIinAngusCattle emissionmeasurementsduringfeeding.Foroneofthosedays,thetimingandquantityoffeed consumedfromtheGreenFeedunitwascontrolledtominimizevariationduetoanimalfeed- ingbehavior.Duringthatday,approximately1kgoftotalmixedration(TMR)wasprovidedat alternating1.5and3hintervalsinordertomeasurethepeaksandtroughsofmethaneproduc- tion[11];ontheotherdays,feedprovidedfromtheGreenFeedunitwasapelletedformofthe finishingperiodTMRcomponents,providedadlibitum.Fornon-GreenFeeddays,dailyration wasdividedintofourpartsofferedthroughouttheday(earlyandlatemorningandafternoon) inorderfortheintermittentfeedingallowedbytheGreenFeedtonotpresentahugedeparture fromhabituatedfeedingpatterns. Forboththegrowingandfinishingperiods,RFIisdefinedastheresidualofdrymatter intakeadjustedforrateofgainandbodysize[12], DMI¼b þb ADGþb MMWþRFI 0 1 2 whereDMIisaveragedailydrymatterintake;ADGisaveragedailygain,estimatedfromthe regressionof14d-bodyweightsontime;MMWismetabolicmid-weight,or(meanperiod bodyweight)0.75;b ,b andb arethepartialregressioncoefficientsassociatedwiththeinter- 0 1 2 cept,ADGandMMWT,respectively. Atslaughter,standardbeefcarcasstraitphenotypeswerecollected,withtheadditionof organweightsandcarcassspecificgravity,apredictorofthefatcontentofthecarcass[13],esti- matedfromCW/(CW-CW )whereCWisthedrycarcassweightandCW istheweight H2O H2O ofthecarcasssuspendedinwater(measuredtonearest1g). RNAIsolation,cDNALibraryConstruction,andTranscriptome Sequencing Samplesofpituitary,skeletalmuscle,liver,visceraladipose(KPHfat),andduodenumwerecol- lectedwithin25minutesofslaughter,snapfrozeninliquidnitrogentopreserveRNAintegrity, andfrozenat-80°C.Tocollectthepituitary,theskullwasbisectedlongitudinallyandthepitui- taryidentifiedbyabovinephysiologist.ToextractRNA,approximately200mgoffrozentissue wasimmersedinliquidnitrogen,groundwithamortarandpestle,andhomogenizedin2mL TRIzol1(ThermoFisherScientific,Waltham,MA)usingaMiniBeadBeater-8(BiospecProd- ucts,Bartlesville,OK)forupto10s,exceptfattissuewhichwasshakenratherthanbeadbeaten toavoidRNAdegradation.TotalRNAwaspurifiedusingtheTRIzolstandardprotocol (ThermoFisherScientific,Waltham,MA),andresuspendedin25μLofRNase-freewater. RNAquantityandqualitywereassessedusingNanoDrop1spectrophotometer(ThermoSci- entific,Wilmington,DE)andAgilent2100Bioanalyzer(SantaClara,CA).Foreachtissuetype, mean260/280ratiorangedfrom1.84to1.93(0.10SD),andmeanRNAintegritynumberfrom 7.0to8.1(2.0SD).TheIlluminaTruSeqstrandedmRNAHTsamplepreparationprotocol (SanDiego,CA)wasusedtogeneratedual-indexedcDNAlibrariesforeachsampleusing1μg oftotalRNAasinput.SuccessoflibrarypreparationwasdeterminedbyAgilent2100Bioanaly- zer(SantaClara,CA),afterwhichall80samplesweremultiplexedintoasingleequimolarpool toavoidsequencingrunbias.Singleend100bpsequencingwasconductedonanIllumina HiSeq2000followingstandardprotocols. SequenceAnalysisandMixedModelAnalysis Eightysamples,fivetissuesfromsixteenAngussteers,wereanalyzedwithRNA-seq.Failed readswerediscardedbeforeanalysis.Sampleswithlessthan10millionreads(oneadiposeand oneduodenalsample)werediscarded.Fortheremainingsamples,weobtained45.2Mreads persampleonaverage,withmeanPhredscore35.8(0.13SD),medianPhred38,andlessthan PLOSONE|DOI:10.1371/journal.pone.0152274 March28,2016 4/19 GeneNetworksforRFIinAngusCattle 7%ofreadsbelowPhredscore30.Noadditionalsequencefilteringwasperformed.Sequence readsweremappedtothebovinereferencegenome(UMD3.1forBTA1-29andXandBtau 4.6.1forBTAY)usingCLCGenomicsWorkbench7RNA-seqtool(RedwoodCity,CA).Reads wererequiredtomapwith80%similarityfor90%oftheirlength,which93%ofreadsachieved. Weusedreadsperkilobaseofgenepermillionmappedreads,RPKM[14],astheunitof expression.Agenewasconsideredtissuespecific(TS)ifonetissuerepresentedatleasttwo- thirdsofthetotalexpressionacrosstissues.HighlyexpressedTSgeneswerecomparedwithtis- sueexpressionprofilesinBostaurusandothervertebratespeciesbasedontheEMBL-EBI ExpressionAtlas(https://www.ebi.ac.uk/gxa/home)toverifythattheywereconsistentwith previouslyobservedexpressionpatternsinthesetissues. Geneexpressionbysiregroupwasestimatedusingamixedmodelapproach[15,16]in ordertodeterminewhetheranygenesweredifferentiallyexpressedacrosstissuesduetosire effects. Y ¼μþGþGT þGA þGS þe ijkl i ij ik il ijkl wherelog2-transformedRPKM(Y )wasmodeledasafunctionoftherandomeffectsofgene ijkl (G),genebytissue(GT ),genebyanimal(GA ),andgenebysiregroup(GS )forigenes,jtis- i ij ik il sues,kanimals,andlsires.Randomresidual(e )wasassumedtobeindependentandidenti- ijkl callydistributed.VariancecomponentanalysiswasperformedusingVCE6software(Eildert Groeneveld,Friedrich-Loeffler-Institut,ftp://ftp.tzv.fal.de/pub/vce6/).Agenewasconsidered differentiallyexpressedbetweensiregroups(DE)ifthegenebysireeffectwasatleasttwostan- darddeviationsfromthemean,correspondingtoP<0.01.TocompareTSandDEgeneswith knowntranscriptionfactors(TF),allknownTFfromAnimalTFDB[17](http://www.bioguo. org/AnimalTFDB/)werefilteredforthosebothabundantandmostconsistentlyassociated withTSandDEgenesbetweensiregroupsbasedonregulatoryimpactfactormetrics[16,18] whichweightsaveragegeneexpressionacrosssamples(G),thedifferentialexpressiondueto i siregroup(GS ),andtheco-expressioncorrelationbetweenTFandDEorTSgenes.Genes il harboringSNPidentifiedbyBolormaaetal.[19]asassociatedwithRFI(hereafterreferredto asSNPgenes)wereincludedtodeterminehowcloselythisexperimentalignswithaGWAS studyfromabroaderbeefcattlepopulation. NetworkandPathwayAnalysis AgenenetworkforRFIwithinthesefivetissueswasderivedusingtheTS,DE,TFandSNP genesasnodes,andsignificantconnectionsbetweenthemweredeterminedviapartialcorrela- tionandinformationtheory(PCIT)algorithmsandsoftwareasdescribedbyReverterand Chan[20].PCITreliesoncalculatingthecorrelationbetweenapairofgenesafteraccounting forallothergenes(thus,thepartialcorrelation).Connectionsbetweengenenodeswere acceptedwhenthepartialcorrelationwasgreaterthantwostandarddeviationsfromthemean (P<0.01).Pairwiseco-expressedgeneswereimportedintoCytoscapesoftware[21](http:// www.cytoscape.org/),tobevisualizedandclusteredintonetworksusingaforce-directededge- weightedspringembeddedlayout[22].FurtherfunctionalanalysiswasperformedusingInge- nuityPathwayAnalysis1(RedwoodCity,CA;www.qiagen.com/ingenuity)andBlast2GO PRO[23].ForIPAanalyses,thehuman/mouse/ratgeneorthologueIDsandthefoldchanges forallDEbovinegenesexpressedineachtissuewerecomparedtotheIPAdatabaseofpath- ways,networks,diseases,functions,andregulatorsforgenesetenrichment(P<0.05)andacti- vationZ-score(|Z|>2)analysis.ForBlast2GO,allannotatedbovinegeneswereimported fromEnsemblBiomart(http://www.ensembl.org/biomart/martview/),andsignificantly enrichedGOterms(P<0.05)foragivengenesubsetwereidentifiedusingFisher’sexacttest. PLOSONE|DOI:10.1371/journal.pone.0152274 March28,2016 5/19 GeneNetworksforRFIinAngusCattle Results SireGenomicBreedingValuesPredictedDifferenceinProgeny Phenotypes ThehighandlowRFIbulls’progenywerephenotypedforRFIandavarietyofgrowth,intake, metabolism,andbodycompositiontraitstodeterminewhichtraitsdifferentiatedthem.Aspre- dictedfromtheirsires’breedingvalues,theprogenyofthelowRFIsirehadlowerRFIthanthe progenyofthehighRFIsireinthefinishingphase(-0.57kgDM/d),withasimilartrendinthe growingphase(-0.62kgDM/d;Table2).AswithRFI,feedconversionratio(DMI/ADG)was decreasedinprogenyofthelowRFIsirerelativetothehighRFIsireinthefinishingphase.Sire breedingvaluespredictprogenyofthelowRFIsiretoexhibitreducedintakewithsimilarADG relativetoprogenyofthehighRFIsire,whichwasobservedinthegrowingphase(siregroup differencesof-0.48kg/dDMIand0.00kg/dADG)butnotinthefinishingphase(siregroup differencesof0.01kg/dDMIand0.22kg/dADG).Largerfinishingandcarcassweightswere observedintheprogenyofthelowRFIsire,asmightbepredictedfromthehigherpedigree- basedbreedingvaluesofthatsireforweaningweight(WW),yearlingweight(YW),andmature weight(MW).ThelowRFIsiregrouphadhighercarcassspecificgravities,indicatingthat theseanimalswerelessfatorleanerforthesamecarcassweight.Nosignificantdifferences wereobservedinothercarcasstraitsorinheart,liverorkidneyweights. Table2. Phenotypicdifferencesbetweensiregroups(lowRFIsire–highRFIsire)comparedwithexpectedprogenydifferencebasedonbullbreed- ingvalues. Differencesbetweensireprogenygroupsforgrowth,intake,feedefficiency,feedingbehavior,methaneproduction,andcarcasstraitsarepro- vided,includingtrait,traitmean,meandifferencebetweensiregroups,P-valueforthatdifference(P<0.05bolded),andexpectedprogenydifferencebased onsirebreedingvalueswhereavailable. TraitType Trait Period Mean(SE) SireGroupDifference P-value ExpectedProgenyDifference Growth, MMW,kg0.75 Growing 74.5(1.1) 0.8 7.3E-01 Intake,& Finishing 100.4(0.9) 3.3 4.0E-02 Feed ADG,kg/d Growing 1.71(0.05) 0.00 9.8E-01 0.00 Efficiency Finishing 1.40(0.06) 0.22 8.0E-02 DMI,kgDM/d Growing 9.55(0.25) -0.48 3.4E-01 -0.18 Finishing 8.52(0.20) 0.01 9.8E-01 Feedconversion Growing 5.63(0.17) -0.28 4.1E-01 ratio(DMI/ADG) Finishing 6.21(0.23) -1.08 1.0E-02 RFI,kgDM/d Growing 0.00(0.19) -0.62 9.0E-02 -0.16 Finishing 0.00(0.15) -0.57 5.0E-02 Feeding BunkVisits,visits/d 57.7(2.9) -12.9 2.0E-02 Behavior BunkVisitDuration,min/visit 1.87(0.13) 0.60 1.0E-02 (GrowingPeriod) FeedingDuration,min/d 96.7(3.1) 7.04 2.6E-01 MethaneProduction Controlledfeedamountand 165.3(13.1) 6.6 8.1E-01 interval,gCH /d 4 (FinishingPeriod) Adlibfeeding,gCH /d 161.8(9.5) 8.7 6.6E-01 4 Carcass Finalweight,kg 533.9(6.1) 28.8 1.0E-02 MW33.6 Hotcarcassweight,kg 323.4(4.1) 12.6 1.1E-01 10.5 Rib-eyearea,cm2 80.2(1.9) 6.8 7.0E-02 5.7 Backfatthickness,mm 12.9(0.4) -0.5 5.4E-01 -0.5 Yieldgrade 3.0(0.1) -0.3 2.6E-01 Marblingscore 6.8(0.3) 0.0 1.0E+00 0.0 Carcassspecificgravity 1.08(0.002) 0.0045 3.0E-02 Heartweight,kg 2.01(0.10) 0.25 2.0E-01 Liverweight,kg 6.00(0.17) -0.03 9.2E-01 Kidneyweight,kg 1.00(0.03) -0.03 6.4E-01 doi:10.1371/journal.pone.0152274.t002 PLOSONE|DOI:10.1371/journal.pone.0152274 March28,2016 6/19 GeneNetworksforRFIinAngusCattle Whilefeedingbehaviorwasonlymeasuredinthegrowingperiod,progenyofthelowRFI sirevisitedthefeedbunklessoften(-12.9visits/d)andstayedlonger(0.6min)ateachvisit.No significantdifferenceswereobservedformethaneproduction. DifferentialExpressionandPathwayAnalysis Of24,737annotatedbovinegenes,7,721werenotexpressed(RPKM<0.2)inanyofthetissues surveyed.Weidentified1,026TSgenes,including285inthepituitary,220inskeletalmuscle, 275intheliver,33inadipose,and213intheduodenum,and633DEgenesacrossalltissuesin thelowversushighRFIsiregroups(S2Table).Pathwayanalysisshowedmostdifferentially expresseddiseaseandbiofunctions(P<0.05and|Z|>2)correspondedtoactivationofthe immuneresponseintheduodenumanddownregulationoffatdepositioninadiposeandmus- cletissue(Table3).Thecombinedeffectofdownregulationofphosphoenolpyruvatecarboxy- kinase2(PCK2),thyroidhormoneresponsive(THRSP),fattyacidsynthase(FASN),stearoyl- CoAdesaturase(SCD),acetyl-CoAcarboxylasealpha(ACACA),acyl-CoAsynthetaselong- chainfamilymember1(ACSL1),glycerol-3-phosphateacyltransferase(GPAM),and1-acylgly- cerol-3-phosphateO-acyltransferase9(AGPAT9)supportadeactivationofaregulatorynet- workcontrollingfattyacidmetabolismintheadiposetissueoftheprogenyofthelowRFIsire (Fig1).Thisisconsistentwiththeincreaseincarcassspecificgravityoftheprogenyofthelow RFIsire,whichsuggestsareducedbodyfatcontent. Ofthe633DEgenes,122wereTS,6wereTF,and12harborSNPidentifiedbyBolormaa etal.[19]asassociatedwithRFIinalargecattlepopulation(Fig2).The6DETFareETSvari- ant4(ETV4),group-specificcomponent/vitaminDbindingprotein(GC,alsoliver-specific), highmobilitygroupbox1protein(HMGB1),sexdeterminingregionY-box6(SOX6),transdu- cinbeta-like1Y-linked(TBL1Y),andanuncharacterizedprotein(ENSBTAG00000036343). ETV4ismosthighlyexpressedinthepituitaryandduodenumandisupregulatedintheprog- enyofthelowRFIsire.HMGB1,SOX6,andTBL1Yareexpressedinallassayedtissuesbut mosthighlyintheduodenum.HMGB1andTBL1Yareupregulatedinalltissues,andSOX6is downregulatedintheduodenum,pituitary,andskeletalmuscleandupregulatedinliverand adipose.ENSBTAG00000036343isanadipose-specificheatshockproteinandstronglydown- regulated(-5.2foldchange).The12DEgenesharboringGWASSNPareacyl-CoAsynthetase long-chainfamilymember1(ACSL1),carcinoembryonicantigen-relatedcelladhesionmole- cule20(CEACAM20),chordin-like2(CHRDL2),claudin2(CLDN2),glypican3(GPC3),glu- tamatereceptorionotropicAMPA2(GRIA2),interleukin2receptorgamma(IL2RG),lipoma HMGICfusionpartner-like1(LHFPL1),lin-52DREAMMuvBcorecomplexcomponent (LIN52),ryanodinereceptor3(RYR3),transmembraneprotein8C(TMEM8C),andZW10 interactingkinetochoreprotein(ZWINT).WhilerelativelyfewDEgenesareTForSNPgenes, somehavekeybiologicalfunctionsintheimmunesystem,lipidmetabolism,andmusclepro- cesses.GCistheprimarycarrierofvitaminDinthebloodandamacrophageactivatingfactor whichisusedinsomecancertherapies[24].IL2RGisasignalingcomponentofmanyinterleu- kinreceptorsandloss-of-functionofthisgenehasbeenassociatedwithX-linkedimmunodefi- ciencyinhumans[25].ACSL1isanintermediateoffattyacidmetabolism.RYR3isinvolvedin releasingcalciumfromintracellularstores.Overall,manyDEgeneswereTSandonlyafew werealsoTForGWASSNPgenes,manysupportingimmunesystemandfatmetabolismroles. PCITNetworkAnalysis Partialcorrelationinformationtheorywasusedtodeterminesignificantpartialcorrelations betweenTS,DE,TF,andSNPgenes(N=115,058edges;Fig3). PLOSONE|DOI:10.1371/journal.pone.0152274 March28,2016 7/19 GeneNetworksforRFIinAngusCattle Table3. PathwayanalysisofdifferentiallyexpressedgenesbetweenlowandhighRFIsiregroupsbytissue,forpituitary(P),skeletalmuscle(M), liver(L),adipose(A),andduodenum(D). Topbiofunctionsby|Z-score|fromIPAareprovided,expressedaslowrelativetohighRFIsireprogenygroupdif- ferences;allaresignificant(P<0.05).Functionsassociatedwiththeimmunesystemorfatdepositionaregroupedtogether,allothersignificantfunctionsat thebottom. DiseasesorFunctionsAnnotation P M L A D DiseasesorFunctionsAnnotation P M L A D Immunesystem Fatdeposition activationofantigenpresentingcells 2.6 differentiationofadipocytes 2.4 immuneresponseofantigenpresenting 2.0 massofadiposetissue 2.2 cells inflammationofbodyregion 2.1 concentrationoftriacylglycerol -2.5 chemotaxisofgranulocytes 2.0 synthesisoftriacylglycerol -2.4 -2.6 recruitmentofgranulocytes 2.2 quantityofdiacylglycerol -2.0 inflammationoflargeintestine -2.7 concentrationofacylglycerol -2.1 colitis -2.7 synthesisofacylglycerol -2.2 activationofleukocytes 2.3 2.7 metabolismofmembranelipidderivative -2.2 immuneresponseofleukocytes 2.2 concentrationof -2.3 -2.3 -3.1 1,2-dipalmitoylphosphatidylcholine recruitmentofleukocytes 2.7 2.8 2.8 concentrationofphosphatidylcholine -2.2 -2.1 activationofmacrophages 2.5 beta-oxidationoffattyacid -2.2 activationofmononuclearleukocytes 2.3 accumulationoflipid -3.0 -2.4 cellmovementofmononuclear 2.0 bindingoflipid 2.0 leukocytes responseofmononuclearleukocytes 2.6 fluxoflipid 2.6 2.5 activationofmyeloidcells 2.3 transportoflipid 2.8 responseofmyeloidcells 2.4 transportofcholesterol 2.1 chemotaxisofneutrophils 2.3 fattyacidmetabolism 2.1 activationofphagocytes 2.4 transportofsteroid 2.2 immuneresponseofphagocytes 2.4 steroidmetabolism -2.2 recruitmentofphagocytes 2.5 2.1 2.4 concentrationofhormone -3.0 responseofphagocytes 3.0 2.2 bindingofcarbohydrate 2.0 2.2 viralinfection -2.3 uptakeofcarbohydrate 2.1 inflammatoryresponse 2.3 3.2 insulinresistance 2.1 Othertraits morbidityormortality -2.2 relaxationofartery 2.7 necrosis -2.5 recruitmentofbloodcells 2.4 2.6 2.6 depositionofextracellularmatrix -2.2 -2.2 vasoconstriction 2.0 contractilityofmuscle 2.2 bleeding -2.3 proliferationofmusclecells 2.6 functionofcardiacmuscle 2.1 formationoffibrils -2.2 activationofcells 2.3 2.0 2.2 fibrogenesis -2.0 2.2 cellmovement 2.1 2.6 injuryofliver 2.1 engulfmentofcells 2.6 exportofmolecule 2.3 migrationofcells 2.1 2.8 neurologicalsigns 2.2 damageofendothelialcells 2.0 -2.2 secretionofprotein 2.2 damageofepithelialtissue 2.5 softtissueneoplasm -2.1 stimulationofepithelialcells -2.1 doi:10.1371/journal.pone.0152274.t003 Therewere6majorclusterstothePCITnetwork,whichalignwiththetissueofhighestrela- tiveexpression(withmusclehavingtwoclustersandallothertissueshavingoneclusterpertis- sue),asmorethan90%ofedgesarebetweengeneswithintissue.Thenumberofedgesfrom onetissuetoanother(e.g.fromlivertoanyothertissue)wereproportionaltothenumberof nodesforthattissue(R2=0.94).Commensuratewithitsroleasahormonalregulator,ofthe PLOSONE|DOI:10.1371/journal.pone.0152274 March28,2016 8/19 GeneNetworksforRFIinAngusCattle Fig1.DownregulationofregulatorynetworkcontrollingfatdepositionamonglowRFIsireprogeny. Thisfiguredisplaystheregulatorynetworkconnectingconcentrationoftriacylglycerol,accumulationoflipid, quantityofinsulinintheblood,quantityofconnectivetissue,andmigrationofphagocytes,overlaidwithfold changesobservedinadiposetissue.Red=up-regulated,green=down-regulated,orange=predicted activation,blue=predictedinhibition,andyellow=inconsistent. doi:10.1371/journal.pone.0152274.g001 top50genesrankedbynumberofedgestoothergenes,38aremosthighlyexpressedortissue specifictothepituitary,suchasluteinizinghormone/lutropinsubunitbeta(LHB;280edges), Gprotein-coupledreceptor173(GPR173;273edges),EF-handdomainC-terminalcontaining 1(EFHC1;268edges),prolactin(PRL;267edges),andgrowthhormone/somatotropin(GH1; 266edges).ThedistributionofnumberofedgespergeneisprovidedinFig4. ThemajorityofedgesarebetweenTSgenes(54%)orbetweenTSandDE,TF,orSNPgenes (32%).ThereareproportionallymoreedgestoDEgenesthantoSNPgenes(27%versus20%). TwogenesidentifiedinBolormaaetal.[19]aspotentialQTLforRFIwereSrchomology2 domaincontainingtransformingprotein3(SHC3)andinsulin-likegrowthfactorbindingpro- tein2(IGFBP2).SHC3,whilenotDEoraTF,wassignificantlycorrelatedwith18DEgenes (predominantlyexpressedinthepituitaryandduodenum),17SNPgenes,5TF[Mshhomeo- box1(MSX1),pairedbox8(PAX8),zincfingerprotein300(ZNF300),v-etsavianerythroblas- tosisvirusE26oncogenehomolog1(ETS1),andsignaltransducerandactivatorof transcription6,interleukin-4induced(STAT6)],and1TSgene.IGFBP2wasadjacenttobut didnotharborGWASSNP,wasnotusedasaSNPgeneinthisstudynorwasitidentifiedas DEorTS,butrelatedproteinsIGFBP1and4wereTSandDEandcorrelatedwith219and18 genesintheliver,respectively.FivepercentofedgesconnecttoTF,ofwhichthemosthighly connectedTFareMSX1(235edges),GC(228),v-mybavianmyeloblastosisviraloncogene homolog(MYB;203),ETS1(200),SIXhomeobox3(SIX3;194),SAMpointeddomaincontain- ingETStranscriptionfactor(SPDEF;192),zincfingerE-box-bindinghomeobox1(ZEB1; 187),LIMhomeobox3(LHX3;182),andmyogenicdifferentiation1(MYOD1;165).TFand genesconnectedtothembyanedgewereextractedandvisualizedasanewnetwork(Fig5). IntheTFnetworkdiagram,theclustersbytissuearepresent,withsmallclustersaroundTF thatregulategeneexpressionwithinandacrosstissues.TheTFwiththegreatestnumberof PLOSONE|DOI:10.1371/journal.pone.0152274 March28,2016 9/19 GeneNetworksforRFIinAngusCattle Fig2.VenndiagramofDE,TS,TF,andSNPgenes. doi:10.1371/journal.pone.0152274.g002 edgesinthepituitaryare,indescendingorder,MSX1,ETS1,SIX3,ZEB1,LHX3,myelintran- scriptionfactor1(MYT1),zincfingerE-boxbindinghomeobox2(ZEB2),friendleukemia integration1transcriptionfactor(FLI1),andGATAbindingprotein3(GATA3).GATA3is linkedthroughDEandSNPgenestoE2Ftranscriptionfactor1(E2F1)intheduodenum,in whichtheothermajorTFareMYB,SPDEF,andcaudaltypehomeobox1(CDX1).Similarly, ZEB1andFLI1arelinkedwithhematopoieticallyexpressedhomeobox(HHEX)intheliver,in whichGC,uncharacterizedproteinENSBTAG00000030470,signaltransducerandactivatorof transcription3(STAT3),andE2Ftranscriptionfactor4(E2F4)areothermajorTF.ZEB2is linkedwithT-cellacutelymphocyticleukemia1(TAL1),theonlymajoradiposeTF,which clusterswithmuscleTFsMYOD1,transcriptionterminationfactor,RNApolymeraseI(TTF1), ZincfingerX-chromosomalprotein(ZFX),iroquoishomeobox3(IRX3),zincfingerand SCANdomaincontaining21(ZSCAN21),andzincfingerprotein35(ZNF35).Mostclusters areanapproximatelyevenmixtureofDEandSNPgenes,withtheexceptionoftheGC/ ZNF160-centricclusterintheliverwhichisricherinDEgenes,andaclusterofSNPgenes linkedtoZFX,IRX3,andzincfingerprotein35(ZNF35)inskeletalmuscle.Comparingthese PLOSONE|DOI:10.1371/journal.pone.0152274 March28,2016 10/19

Description:
derived using partial correlation and information theory (PCIT), including differentially Feed costs can be reduced by improving feed conversion efficiency without sacrificing production traits; one option for this is to consider residual feed intake (RFI; [2]) Animal Management and Phenotype Col
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.