Identification of Antimicrobial Drug Targets from Robustness Properties of Metabolic Networks Ove Øyås Chemical Engineering and Biotechnology Submission date: June 2015 Supervisor: Eivind Almaas, IBT Norwegian University of Science and Technology Department of Biotechnology D ECLARATION Ideclarethatthisworkhasbeenperformedindependentlyandinaccordance withtherulesandregulationsforexaminationsattheNorwegianUniversity ofScienceandTechnology(NTNU). OveØyås, Trondheim,June11,2015 i A BSTRACT Areactionuniversecontainingall13,849metabolicreactionsknowntoexist was constructed and found to share many topological properties with real- worldmetabolicnetworks. Integrationofthereactionuniverseinto43differ- entmicrobialgenome-scalemetabolicreconstructionsledtoimprovedviabil- ityandrobustness. Fivemetabolicreactionsremainedessentialinmorethan 70 % of these reconstructions after integration of the reaction universe and theseabsolutelysuperessentialreactionswereidentifiedaspotentialtargets for broad-spectrum antimicrobial drugs. One of the five reactions was in- volved in peptidoglycan biosynthesis and the remaining four were part of riboflavinmetabolism. Noreactionswereabsolutelysuperessentialinall43 cellular contexts, meaning that no set of reactions that are always essential inanymetabolicnetworkislikelytoexist. Ten of the reconstructions into which the reaction universe was inte- grated were used to generate large ensembles of random viable metabolic networks. The method used for metabolic network randomization was eval- uated and it was found that it produced networks with large fractions of blocked reactions. Aside from this, the reaction contents of random viable metabolic networks correlated very strongly with network size. Most im- portantly, small networks were less randomized than large ones. Even so, the increased size of the reaction universe relative to past studies allowed greaternetworkrandomizationthanwhathaspreviouslybeenachieved. Many reactions that were essential or part of synthetic lethal pairs in random viable metabolic networks were capable of being so in all investi- gated cellular contexts. Based on this, it was postulated that essentiality and synthetic lethality is often caused by factors that are shared between differentorganismsandenvironments. iii iv Abstract Superessentialityindices,whichindicatehowfrequentlyreactionsareex- pectedtobeessentialinmetabolicnetworksingeneral,werecalculatedand foundtocorrelatepositivelybetweencellularcontexts. However,thesecorre- lationswereonlystrongbetweenindicesobtainedfromverysimilarmodels, indicatingthatsuperessentialityissensitivetocellularcontext. Also,agreat deal of deviation between indices calculated in this study and previously re- portedoneswasobserved,primarilyduetotheincreasedsizeofthereaction universe. An average superessentiality index revealed that some reactions were highly superessential in all investigated cellular contexts and the ten reactionswithhighestaveragesuperessentialityindices,alloftheminvolved inpurineorhistidinemetabolism,wereidentifiedaspotentialantimicrobial drugtargets. Syntheticlethalitydataobtainedfromrandomviablemetabolicnetworks was used to construct graph representations of pairwise synthetic lethal in- teractions between reactions. All of these synthetic lethality networks con- tained a giant component in which most nodes were found and in all cases this giant component was highly clustered and single-scale and exhibited small-worldproperties. Indicationsofassortativenetworkorganizationwere alsofound. Finally,analgorithmwasdevelopedforidentifyingalternativemetabolic pathways of essential reactions in metabolic networks and applied to all es- sential reactions in two models of potentially pathogenic bacteria. It was found that more than 500 alternative metabolic pathways existed in the re- action universe for most essential reactions in these models. The remaining essential reactions generally had few alternative pathways, most of which consisted of few reactions. Comparison to superessentiality indices showed that the key determinant for reaction superessentiality was most likely a combinationofthenumberofalternativepathwaysandthelengthsofthese pathways. A (N ) BSTRACT ORWEGIAN Et reaksjonsunivers bestående av alle 13 849 kjente biokjemiske reaksjoner blekonstruert. Mangefellestopologiskeegenskapermellomdetteuniverset og reelle metabolske nettverk ble funnet. Integrering av reaksjonsuniverset i 43 ulike rekonstruksjoner av mikrobielle metabolske nettverk forbedret disse nettverkenes levedyktighet og robusthet. Fem reaksjoner forble es- sensielleimerenn70%avdissenettverkeneetterintegreringavreaksjons- universetogdisseabsoluttsuperessensiellereaksjonenebleidentifisertsom potensiellemålforbredspektredeantimikrobiellemidler. Énavdefemreak- sjonene var involvert i peptidoglykansyntese og de fire andre var del av ri- boflavinmetabolismen. Ingenreaksjonervaressensielleialledissecellulære kontekstene,noesombetyratdetsannsynligvisikkefinnesnoesettavreak- sjonersomalltideressensielleiallemetabolskenettverk. Ti av nettverkene som reaksjonsuniverset ble integrert i ble brukt til å generere store samlinger av tilfeldige levedyktige metabolske nettverk. Metoden som ble brukt til nettverksrandomisering ble evaluert og det ble funnetatnettverkenedenproduserteinneholdtstoreandelerblokkertereak- sjoner. Reaksjonsinnholdetinettverkenekorrelerteforøvrigsterktmednett- verkenes størrelse. Blant annet ble nettverk med få reaksjoner mindre ran- domisert enn de med mange. Nettverkene ble likevel mer randomisert enn i tidligere studier som følge av at reaksjonsuniverset som ble brukt her var større. Mangereaksjonersomvaressensielleellerdelavsyntetiskletaleparide tilfeldige metabolske nettverkene var i stand til å være essensielle i alle de cellulære kontekstene som ble undersøkt. Basert på dette ble det postulert atessensialitetogsyntetiskletalitetofteerforårsaketavfaktorersomdeles mellomulikeorganismerogmiljøer. v vi Abstract(Norwegian) Superessensialitetsindekser,somindikererhvoroftereaksjonerventeså være essensielle i metabolske nettverk generelt, ble beregnet og positiv kor- relasjon ble funnet mellom ulike cellulære kontekster. Sterk korrelasjon ble imidlertidkunfunnetmellomindekserberegnetfrasværtlikemodeller,noe somindikereratsuperessensialitetavhengeravcellulærkontekst. Myevari- asjonbleogsåfunnetmellomindeksenesombleberegnetidennestudienog de som tidligere har blitt rapportert, men dette skyldtes primært den økte størrelsen på reaksjonsuniverset. En gjennomsnittlig superessensialitetsin- deks viste at noen reaksjoner var svært superessensielle i alle undersøkte cellulærekonteksterogdetireaksjonenemedhøyestgjennomsnittligindeks ble identifisert som potensielle mål for antimikrobielle midler. Alle disse reaksjonenevardelavpurin-ellerhistidinmetabolismen. Syntetisk letalitet observert i tilfeldige nettverk ble brukt til å sette opp nettverksrepresentasjoneravsyntetiskletaleinteraksjonermellomreaksjon- spar. I alle disse nettverkene var de fleste nodene samlet i en stor sam- menkoblet komponent som inneholdt mange tett koblete klynger av noder, haddeénskala,ogutviste«litenverden»-egenskaper. Indikasjonerpåassor- tativnettverksorganiseringbleogsåfunnet. En algoritme ble utviklet for identifisering av alternative biokjemiske spor for essensielle reaksjoner i metabolske nettverk. Denne algoritmen ble anvendt på alle essensielle reaksjoner i to modeller av potensielt patogene bakterier. Merenn500alternativesporblefunnetireaksjonsuniversetforde flesteavdissereaksjonene. Deøvrigeessensiellereaksjonenehaddegenerelt fåogkortealternativespor. Sammenligningmedsuperessensialitetsindekser avdekketatdenviktigstedeterminantenforsuperessensialitetsannsynligvis varenkombinasjonavantallalternativesporoglengdentildissesporene. P REFACE Theworkpresentedinthismaster’sthesiswascarriedoutattheNorwegian UniversityofScienceandTechnology(NTNU)inthespringof2015. Thethe- sismarkstheendofmytimeasastudentintheBiotechnologyspecialization ofthefive-yearM.Sc.programinChemicalEngineeringandBiotechnology. My supervisor has been Professor Eivind Almaas at the Department of Biotechnology, to whom I would like to express my sincere gratitude. His dedicationandinsightshavemotivatedmegreatlythroughoutthetimespent workingonthisthesisandourdiscussionshaveinvariablybeenfruitful. I am also grateful to the Wagner lab at the University of Zürich, in par- ticular Dr. Aditya Barve and Professor Andreas Wagner, for welcoming me sowarmlywhenIvisitedtheminthespringof2014. AdityaBarvedeserves special thanks for his interest in my work and for taking the time to follow uponmebothduringandaftermystayinZürich. Peter Wad Sackett and Professor Mikael Rørdam Andersen at the Tech- nical University of Denmark both deserve thanks as well as credit for this thesis. Withoutattendingtheircourses,Iwouldnothavedevelopedtheskills and knowledge needed to pursue these topics. They were also kind enough togivemerecommendationsforjobsthatIappliedfor. I thank Bjørn Lindi and Vegard Eide at NTNU’s Section for Scientific Data Processing for their kind assistance with getting my software up and runningonthesupercomputerVilje. HøiskolensChemikerforeninghasbeenatmysidethroughoutmystudies atNTNUanddeservescreditforwaytoomuchfuntolisthere. Finally, my biggest thanks go to my parents, Trine Hjertås Østlyng and Ola Øyås, for always being there for me and letting me follow my interests, andStineMarieHoggenforherincrediblekindness,patience,andsupport. vii C ONTENTS Declaration i Abstract iii Abstract(Norwegian) v Preface vii Contents viii ListofFigures xi ListofTables xiv 1 Introduction 1 1.1 Theemergenceofsystemsbiology . . . . . . . . . . . . . . . . . 1 1.2 Antimicrobialdrugsandresistance . . . . . . . . . . . . . . . . 2 1.3 Thesisobjective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Theoryandliteraturereview 5 2.1 Linearprogramming . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Definingalinearprogrammingproblem . . . . . . . . . 5 2.1.2 Solutionsandsolutionspace . . . . . . . . . . . . . . . . 6 2.1.3 Solvinglinearprogrammingproblems . . . . . . . . . . 7 2.1.4 Integerandnonlinearprogramming . . . . . . . . . . . 8 2.2 Constraint-basedreconstructionandanalysis . . . . . . . . . . 9 2.2.1 Genome-scalemetabolicreconstructions . . . . . . . . . 10 viii
Description: