ebook img

ICE PDF

168 Pages·09.493 MB·English
by  Chang
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview ICE

Custom Preliminary Edition MEM255 INTRODUCTION TO CONTROLS by Harry G. Kwatny and Bor-Chin Chang Drexel University Winter 2019 cognella® CUSTOM Harry G. Kwatny∗ Bor–Chin Chang† Introduction to Control Systems Engineering December24,2018 ∗Department of Mechanical Engineering & Mechanics, Drexel University, Philadelphia, PA 19104; [email protected] †Department of Mechanical Engineering & Mechanics, Drexel University, Philadelphia, PA 19104; [email protected] ii (cid:13)c H.G.KwatnyandB.C.Chang Dedication Preface Controlsystemengineeringintodaystechnologyenvironmentrequiresamuchbroadersetofcon- cepts and tools than even a decade ago. This book is focused on bringing attention to essential ideasincludingsometypicallyomittedinanundergraduatecourseoncontroldesign.Sinceclass timeisfixedandrigorisessential,anenlargedscoperequiresreducingthetimedevotedtosome topics traditionally taught. Consequently, subjects having lesser import today have less emphasis herein.Ofcourse,suchjudgmentsarepersonalandnotalwayseasytomake.Indeterminingthese choices,wehavebeenguidedbytwocentralobjectives.First,thecontentmustbealignedwiththe the needs of present day applications and make use of modern computational tools. Second, the narrativemustreflectarespectandacknowledgementofthehistoricalevolutionofcontrolanalysis anddesigntheory. Thisbookisintendedforatwoorthreequarter/semestercourse.Correspondingly,thebookis structuredinthreemainparts.Thefirsttwofocusonlinearsystems.PartIintroducesbasiclinear systemanalysisandmodelassemblyconcepts.Anessentialrequirementofcontrolsystemdesign is that the engineer has a full grasp of the system physical behavior in order to be successful. Controldesignintodaysworldbeginswithamathematicalmodelofthesystemtobecontrolled.It isessentialthatthecontroldesignteamunderstanditsformulationandtheassumptionsonwhich it is based even if they do not assemble the model. With this in mind, the first course contains basic model building concepts. Fundamental analysis tools for linear systems are introduced and discussedincorrelationwithmathematicalmodelsofrealphysicalsystems. Part II is focused on linear control system design. Both frequency domain and time domain methodsareincludedandbothsingleinput singleoutput(SISO)systemsandmultipleinput mul- tipleoutput(MIMO)systemsarediscussed.Again,realphysicalsystemsareexaminedusingthe methods and tools introduced. Some of these systems require more advanced modeling concepts thataredeferreduntilPartIII,butthesystemsandmodelsthemselvesarediscussedinPartIIina ChapterentitledThemeExamples.Thepurposeofthismaterialistoprovideandexplainrealistic modelsofsystemshavingcontemporaryinterestthatcanbeselectivelyusedinaparticularcourse. PartIIIaddressesmoreadvancedtopicsincludinganalysis,designandmodelingmethodsfor nonlinearandhybridsystems.Here,wetrytomaintainabalancedapproachbetweenmathematical rigor and engineering necessity in applications. However, contemporary applications for control and automation increasingly involve nonlinearity as well as the mixing of dynamics with logical constraints. Thereisnodoubtthatthisbookwillpresentachallengetostudents.Hopefullyitwillalsobe aninspiration. Contents PartI BasicConceptsofLinearSystems 1 Introduction............................................................... 3 1.1 ControlEngineering .................................................... 3 1.2 ALittleHistory ........................................................ 4 1.3 ImpactoftheDigitalComputer........................................... 5 1.4 AFirstExample:CruiseControl.......................................... 6 1.5 ContentOverview ...................................................... 7 2 LinearSystemsAnalysisI................................................... 9 2.1 TypicalFirst-orderDynamicSystems...................................... 9 2.1.1 MathematicalEquivalencyamongFirst-OrderDynamicSystems ........ 10 2.1.2 CharacterizationofTypicalFirst-OrderDynamicSystems .............. 11 2.2 ABriefReviewofComplexNumbers ..................................... 12 √ 2.2.1 SignificanceoftheImaginaryNumber −1 ......................... 12 2.2.2 PolarForm,RectangularForm,andEulerFormula .................... 13 2.2.3 GeometricalAspectsofComplexNumbers .......................... 15 2.3 ABriefReviewoftheLaplaceTransform .................................. 17 2.3.1 LaplaceTransformPairs .......................................... 17 2.3.2 LaplaceTransformProperties...................................... 20 2.4 Time-DomainResponseofTypicalFirst-orderDynamicSystems .............. 22 2.4.1 TheResponseoftheTypicalFirst-orderSystemsduetoInitialCondition . 23 2.4.2 TheResponseoftheTypicalFirst-orderSystemsduetoUnitStepInput .. 24 2.5 Frequency-DomainPropertiesofTypicalFirst-orderSystems.................. 26 2.5.1 Transferfunctionsvs.DifferentialEquations ......................... 26 2.5.2 CharacteristicEquationandSystemPoles............................ 27 2.5.3 TheResponsesoftheTypicalFirst-orderSystemsduetoSinusoidalInputs 27 2.5.4 FrequencyResponsesandtheBodePlots ............................ 30 2.6 ExerciseProblems...................................................... 33 3 LinearSystemsAnalysisII .................................................. 37 3.1 TypicalSecond-orderDynamicSystems ................................... 37 3.1.1 MathematicalEquivalencyamongTypicalSecond-OrderDynamicSystems 38 3.1.2 CharacterizationofTypicalSecond-OrderDynamicSystems............ 39 X Contents 3.2 TransferFunction,CharacteristicEquationandSystemPoles ................. 40 3.3 Time-DomainResponseofTypicalSecond-orderDynamicSystems ............ 41 3.3.1 TheResponseoftheTypicalSecond-orderSystemsduetoInitialConditions 42 3.3.2 TheResponseoftheTypicalSecond-orderSystemsduetoUnitStepInput 43 3.4 CharacterizationoftheUnderdampedSecond-OrderSystems.................. 49 3.4.1 GeometryofConjugateSystemPolesontheComplexPlane ............ 49 3.4.2 StepResponseoftheUnderdampedSecond-OrderSystem.............. 50 3.4.3 GraphicalInterpretationoftheUnderdampedSecond-OrderStepResponse 51 3.5 AnalysisandDesignofaMass-Damper-SpringSystem ...................... 54 3.6 AnalysisandDesignofaSimpleDCMotorPositionControlSystem ........... 56 3.7 Steady-StateSinusoidalResponseandBodePlotsofTypicalSecond-Order Systems .............................................................. 57 3.8 ExerciseProblems...................................................... 59 4 ModelingofMechanicalSystems............................................. 65 4.1 TranslationalMechanicalSystems ........................................ 65 4.1.1 d’Alembert’sPrinciple............................................ 67 4.1.2 ABriefIntroductionoftheLagrangeApproach....................... 69 4.1.3 AQuarter-CarSuspensionSystem.................................. 70 4.2 RotationalMechanicalSystems........................................... 72 4.2.1 d’Alembert’sPrincipleinRotationalSystems......................... 73 4.2.2 TheLagrangeApproachforRotationalSystems ...................... 75 4.2.3 ATwo-WheelwithOneShaftRotationalSystem...................... 76 4.3 ARotationalSystemwithaGearTrain .................................... 78 4.4 Cart-InvertedPendulumSystem .......................................... 80 4.4.1 TheNewtonianApproachModelingoftheCart-InvertedPendulumSystem 80 4.4.2 LagrangeApproachModelingoftheCart-InvertedPendulumSystem .... 82 4.4.3 PreliminaryAnalysisoftheCart-InvertedPendulumSystem ............ 83 4.4.4 LinearizedState-spaceModeloftheCart-invertedPendulumSystem..... 86 4.4.5 StabilizingControllerDesignfortheCart-invertedPendulumSystem .... 87 4.5 ExerciseProblems...................................................... 91 5 ModelingofElectricalSystems .............................................. 95 5.1 BasicElectricalCircuitElementsandCircuitConventions .................... 96 5.2 BasicTime-domainCircuitModelingApproachesandKirchhoff’sLaws ........ 97 5.2.1 CircuitModelingUsingthe2kEquationsApproach ................... 98 5.2.2 TheNode-To-Datum(NTD)VoltagesApproach ...................... 99 5.2.3 TheMeshCurrentsApproach ..................................... 100 5.3 BasicImpedanceCircuitModelingApproaches ............................. 100 5.3.1 TheImpedanceNTDVoltagesApproach ............................ 102 5.3.2 TheImpedanceMeshCurrentsApproach ........................... 102 5.4 TheLagrangeApproachforCircuitModeling............................... 103 5.5 CircuitModelingUsingTheState-spaceApproach .......................... 107 5.6 OperationalAmplifierCircuits............................................ 111 5.7 DCMotor............................................................. 117 5.7.1 Ampere’sForceLawandFaraday’sLawofInduction.................. 118 5.7.2 AssemblingEquationsfortheDCMotorSystem...................... 119 5.7.3 Torque-speedRelationship ........................................ 120 Contents XI 5.7.4 ADCMicromotorExample ....................................... 121 5.8 ExerciseProblems...................................................... 126 6 SystemsRepresentationsandInterconnectedSystems .......................... 129 6.1 BlockDiagrams........................................................ 130 6.2 SignalFlowGraphsandtheMason’sGainFormula.......................... 134 6.2.1 SignalFlowGraphs .............................................. 134 6.2.2 TheMason’sGainFormula........................................ 135 6.3 State-spaceModel...................................................... 138 6.4 StateTransitionMatrix.................................................. 142 6.4.1 TheoremsandPropertiesoftheStateTransitionMatrix ................ 143 6.4.2 ComputingtheStateTransitionMatrix .............................. 144 6.5 SolutionoftheStateEquation ............................................ 148 6.6 State-spaceModelsandTransferFunctions................................. 151 6.6.1 FindTransferFunctionfromState-spaceModel....................... 152 6.6.2 ConstructaState-spaceModelfromanInterconnectedSystemswith TransferFunctions ............................................... 153 6.7 ExerciseProblems...................................................... 160 References..................................................................... 163 Part I Basic Concepts of Linear Systems 1 Introduction Feedback control is a centuries old tool applied to quite primitive machinery in its earliest days. The last century saw an explosion of applications as mankind conceived of new machines and devicesformanufacturing,communication,landandairtravel,spaceexplorationandmore.These applicationsprovokednewfunctionalitiesofcontrolthatrequiredadeeperunderstandingofhow control systems worked. Hence, control systems emerged as a true engineering science. In this chapter the basic structure of control systems will be discussed along with a brief history of the evolution of the control discipline to where it is today. The chapter ends with a summary of the remainderofthebook. 1.1 ControlEngineering Controlengineeringisadisciplinedealingwiththedesignofdevices,calledcontrollers,thatman- age the performance of a system through manipulation of control inputs. The control input com- mandscanbebasedsolelyontheanticipatedresponseofthesystemortheycanadjustinaccor- dancewithobservationsofsystembehavior.Theformeriscalledopen-loopcontrolandthelatter isfeedbackcontrol.Feedbackcontrolisimportantwhenthereisimpreciseknowledgeofhowthe systemwillrespond,orthereareenvironmentaluncertaintiesthatcanaffectbehavior.Mechanisms ofthissorthavebeenemployedforcenturiesbuttodaytheyaretrulyubiquitous.Controlsystems are an essential part of chemical and manufacturing processes, communication systems, electric powerplantsandsystems,groundvehicles,ships,aircraftandspacecraft,robotsandmanipulators, computersandsoon. Duringthelastcenturyengineeringwastransformedfromacraftintoascience.Thoseinter- estedinprofitingfromsociety’sthirstfornewtechnologyhavefounditimpossibletorelyontime consumingtrialand errortodevelopnew productsorresolveproblems inexistingones.Modern technologies like automobiles, aircraft, telecommunications, and computers are too complex to thrivesolelyonvastcompilationsofempiricaldataanddecadesofexperience.Someintellectual constructs that organize and explain essential facts and principles are required. So engineering, in general and control engineering in particular, has come to adopt the style and methods of the naturalsciences. Atthecoreofthispointofviewisthedistinctionbetweentwothoughtprocesses:thephysical, andthemathematical.Whileengineersconceiveofproblemsinthephysicalworldandconstruct solutions intended for application in the physical world, the solution is almost always developed inthemathematicalworld.Today’sengineersmustbecomfortablewithtranslatingbetweenthem.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.