ebook img

IBM SPSS Amos 19 User's Guide - Amos Development Corporation PDF

654 Pages·2010·5.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview IBM SPSS Amos 19 User's Guide - Amos Development Corporation

IBM SPSS® Amos™ 19 User’s Guide James L. Arbuckle For more information, please contact: Marketing Department Amos Development Corporation SPSS Inc. 2671 Crawfordville Hwy, #2 233 S. Wacker Dr., 11th Floor Crawfordville, FL 32327 Chicago, IL 60606-6307, U.S.A. URL: http://amosdevelopment.com Tel: (312) 651-3000 Fax: (312) 651-3668 URL: http://www.spss.com The SOFTWARE and documentation are provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subdivision (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at 52.227-7013. Contractor/manufacturer is SPSS Inc., 233 S. Wacker Dr., 11th Floor, Chicago, IL 60606-6307. Patent No. 7,023,453 SPSS is a registered trademark. Amos is a trademark of Amos Development Corporation. General notice: Other product names mentioned herein are used for identification purposes only and may be trademarks of their respective companies. Access, Excel, Explorer, FoxPro, Microsoft, Visual Basic, and Windows are registered trademarks of Microsoft Corporation. Microsoft Visual Basic and Windows screen shots reproduced by permission of Microsoft Corporation. IBM SPSS Amos 19 User’s Guide Copyright © 1995–2010 by Amos Development Corporation All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. C o n t e n t s Part I: Getting Started 1 Introduction 1 Featured Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 About the Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 About the Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 About the Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Other Sources of Information. . . . . . . . . . . . . . . . . . . . . . . . . .4 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 2 Tutorial: Getting Started with Amos Graphics 7 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 About the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Launching Amos Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Creating a New Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Specifying the Data File . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Specifying the Model and Drawing Variables . . . . . . . . . . . . . . . 11 Naming the Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Drawing Arrows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Constraining a Parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Altering the Appearance of a Path Diagram . . . . . . . . . . . . . . . . 15 Setting Up Optional Output . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Performing the Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Viewing Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Printing the Path Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . 20 iii Copying the Path Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Copying Text Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Part II: Examples 1 Estimating Variances and Covariances 23 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 About the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Bringing In the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Analyzing the Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Viewing Graphics Output . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Viewing Text Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Optional Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Distribution Assumptions for Amos Models . . . . . . . . . . . . . . . . 35 Modeling in VB.NET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Modeling in C# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Other Program Development Tools . . . . . . . . . . . . . . . . . . . . . 40 2 Testing Hypotheses 41 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 About the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Parameters Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Moving and Formatting Objects . . . . . . . . . . . . . . . . . . . . . . . 45 Data Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Optional Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Labeling Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Hypothesis Testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Displaying Chi-Square Statistics on the Path Diagram . . . . . . . . . . 53 Modeling in VB.NET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 iv 3 More Hypothesis Testing 59 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 About the Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 Bringing In the Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 Testing a Hypothesis That Two Variables Are Uncorrelated . . . . . . .60 Specifying the Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 Viewing Text Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 Viewing Graphics Output. . . . . . . . . . . . . . . . . . . . . . . . . . . .63 Modeling in VB.NET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 4 Conventional Linear Regression 67 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 About the Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 Analysis of the Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68 Specifying the Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 Identification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 Fixing Regression Weights. . . . . . . . . . . . . . . . . . . . . . . . . . .70 Viewing the Text Output . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 Viewing Graphics Output. . . . . . . . . . . . . . . . . . . . . . . . . . . .74 Viewing Additional Text Output . . . . . . . . . . . . . . . . . . . . . . . .75 Modeling in VB.NET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 5 Unobserved Variables 81 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 About the Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 Model A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83 Measurement Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83 Structural Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84 Identification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 v Specifying the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Results for Model A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Model B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Results for Model B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Testing Model B against Model A . . . . . . . . . . . . . . . . . . . . . . 96 Modeling in VB.NET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6 Exploratory Analysis 101 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 About the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Model A for the Wheaton Data. . . . . . . . . . . . . . . . . . . . . . . 102 Model B for the Wheaton Data. . . . . . . . . . . . . . . . . . . . . . . 107 Model C for the Wheaton Data. . . . . . . . . . . . . . . . . . . . . . . 114 Multiple Models in a Single Analysis . . . . . . . . . . . . . . . . . . . 116 Output from Multiple Models . . . . . . . . . . . . . . . . . . . . . . . . 119 Modeling in VB.NET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 7 A Nonrecursive Model 129 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 About the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Felson and Bohrnstedt’s Model . . . . . . . . . . . . . . . . . . . . . . 130 Model Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Results of the Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Modeling in VB.NET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 8 Factor Analysis 137 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 About the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 A Common Factor Model . . . . . . . . . . . . . . . . . . . . . . . . . . 138 vi Identification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Specifying the Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Results of the Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Modeling in VB.NET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 9 An Alternative to Analysis of Covariance 145 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Analysis of Covariance and Its Alternative . . . . . . . . . . . . . . . . 145 About the Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Analysis of Covariance. . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Model A for the Olsson Data. . . . . . . . . . . . . . . . . . . . . . . . . 147 Identification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Specifying Model A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Results for Model A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Searching for a Better Model . . . . . . . . . . . . . . . . . . . . . . . . 149 Model B for the Olsson Data. . . . . . . . . . . . . . . . . . . . . . . . . 150 Results for Model B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Model C for the Olsson Data. . . . . . . . . . . . . . . . . . . . . . . . . 153 Results for Model C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Fitting All Models At Once . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Modeling in VB.NET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 10 Simultaneous Analysis of Several Groups 159 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Analysis of Several Groups . . . . . . . . . . . . . . . . . . . . . . . . . 159 About the Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Model A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Model B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Modeling in VB.NET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 vii 11 Felson and Bohrnstedt’s Girls and Boys 175 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 Felson and Bohrnstedt’s Model . . . . . . . . . . . . . . . . . . . . . . 175 About the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 Specifying Model A for Girls and Boys . . . . . . . . . . . . . . . . . . 176 Text Output for Model A. . . . . . . . . . . . . . . . . . . . . . . . . . . 179 Graphics Output for Model A . . . . . . . . . . . . . . . . . . . . . . . . 181 Model B for Girls and Boys . . . . . . . . . . . . . . . . . . . . . . . . . 182 Results for Model B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Fitting Models A and B in a Single Analysis . . . . . . . . . . . . . . . 188 Model C for Girls and Boys . . . . . . . . . . . . . . . . . . . . . . . . . 188 Results for Model C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 Modeling in VB.NET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 12 Simultaneous Factor Analysis for Several Groups 195 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 About the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 Model A for the Holzinger and Swineford Boys and Girls. . . . . . . . 196 Results for Model A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 Model B for the Holzinger and Swineford Boys and Girls. . . . . . . . 200 Results for Model B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 Modeling in VB.NET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 13 Estimating and Testing Hypotheses about Means 209 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 Means and Intercept Modeling . . . . . . . . . . . . . . . . . . . . . . 209 viii About the Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 Model A for Young and Old Subjects . . . . . . . . . . . . . . . . . . . . 210 Mean Structure Modeling in Amos Graphics . . . . . . . . . . . . . . . 210 Results for Model A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 Model B for Young and Old Subjects . . . . . . . . . . . . . . . . . . . . 214 Results for Model B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 Comparison of Model B with Model A . . . . . . . . . . . . . . . . . . . 216 Multiple Model Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 Mean Structure Modeling in VB.NET. . . . . . . . . . . . . . . . . . . . 217 14 Regression with an Explicit Intercept 221 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 Assumptions Made by Amos . . . . . . . . . . . . . . . . . . . . . . . . 221 About the Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 Specifying the Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 Results of the Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 Modeling in VB.NET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 15 Factor Analysis with Structured Means 229 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 Factor Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 About the Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 Model A for Boys and Girls . . . . . . . . . . . . . . . . . . . . . . . . . 230 Understanding the Cross-Group Constraints . . . . . . . . . . . . . . . 232 Results for Model A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 Model B for Boys and Girls . . . . . . . . . . . . . . . . . . . . . . . . . 235 Results for Model B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 Comparing Models A and B . . . . . . . . . . . . . . . . . . . . . . . . . 237 Modeling in VB.NET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 ix 16 Sörbom’s Alternative to Analysis of Covariance 241 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 About the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 Changing the Default Behavior. . . . . . . . . . . . . . . . . . . . . . . 243 Model A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 Results for Model A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 Model B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 Results for Model B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 Model C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 Results for Model C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 Model D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 Results for Model D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 Model E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 Results for Model E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 Fitting Models A Through E in a Single Analysis . . . . . . . . . . . . . 255 Comparison of Sörbom’s Method with the Method of Example 9 . . . 256 Model X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 Modeling in Amos Graphics . . . . . . . . . . . . . . . . . . . . . . . . 256 Results for Model X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 Model Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 Results for Model Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 Model Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 Results for Model Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 Modeling in VB.NET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 17 Missing Data 269 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 Incomplete Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 x

Description:
Access, Excel, Explorer, FoxPro, Microsoft, Visual Basic, and Windows are registered trademarks of. Microsoft excellent SEM textbooks are available.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.