8.4 mm IA E A N u c le a r E n e rg y S e rie s N o . N W -T IAEA Nuclear Energy Series -1 .1 8 D No. NW-T-1.18 e te rm in a tio n a n d U s e o f S c a lin g F a c Determination and to Basic rs fo r W Principles as Use of Scaling te C h a ra c te Factors for Waste riz a tio n in Objectives N Characterization in u c le a r P o w Nuclear Power Plants e r P la n ts Guides Technical Reports INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA ISBN 978–92–0–110808–1 ISSN 1995–7807 08-36561_P1363_covI+IV.indd 1 2009-05-13 14:26:16 DETERMINATION AND USE OF SCALING FACTORS FOR WASTE CHARACTERIZATION IN NUCLEAR POWER PLANTS The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GUATEMALA OMAN ALBANIA HAITI PAKISTAN ALGERIA HOLY SEE PALAU ANGOLA HONDURAS PANAMA ARGENTINA HUNGARY PARAGUAY ARMENIA ICELAND PERU AUSTRALIA INDIA PHILIPPINES AUSTRIA INDONESIA POLAND AZERBAIJAN IRAN, ISLAMIC REPUBLIC OF PORTUGAL BANGLADESH IRAQ QATAR BELARUS IRELAND REPUBLIC OF MOLDOVA BELGIUM ISRAEL ROMANIA BELIZE ITALY RUSSIAN FEDERATION BENIN JAMAICA SAUDI ARABIA BOLIVIA JAPAN SENEGAL BOSNIA AND HERZEGOVINA JORDAN SERBIA BOTSWANA KAZAKHSTAN SEYCHELLES BRAZIL KENYA SIERRA LEONE BULGARIA KOREA, REPUBLIC OF SINGAPORE BURKINA FASO KUWAIT SLOVAKIA CAMEROON KYRGYZSTAN SLOVENIA CANADA LATVIA SOUTH AFRICA CENTRAL AFRICAN LEBANON SPAIN REPUBLIC LIBERIA SRI LANKA CHAD LIBYAN ARAB JAMAHIRIYA SUDAN CHILE LIECHTENSTEIN SWEDEN CHINA LITHUANIA SWITZERLAND COLOMBIA LUXEMBOURG SYRIAN ARAB REPUBLIC COSTA RICA MADAGASCAR TAJIKISTAN CÔTE D’IVOIRE MALAWI THAILAND CROATIA MALAYSIA THE FORMER YUGOSLAV CUBA MALI REPUBLIC OF MACEDONIA CYPRUS MALTA TUNISIA CZECH REPUBLIC MARSHALL ISLANDS TURKEY DEMOCRATIC REPUBLIC MAURITANIA UGANDA OF THE CONGO MAURITIUS UKRAINE DENMARK MEXICO DOMINICAN REPUBLIC MONACO UNITED ARAB EMIRATES ECUADOR MONGOLIA UNITED KINGDOM OF EGYPT MONTENEGRO GREAT BRITAIN AND EL SALVADOR MOROCCO NORTHERN IRELAND ERITREA MOZAMBIQUE UNITED REPUBLIC ESTONIA MYANMAR OF TANZANIA ETHIOPIA NAMIBIA UNITED STATES OF AMERICA FINLAND NEPAL URUGUAY FRANCE NETHERLANDS UZBEKISTAN GABON NEW ZEALAND VENEZUELA GEORGIA NICARAGUA VIETNAM GERMANY NIGER YEMEN GHANA NIGERIA ZAMBIA GREECE NORWAY ZIMBABWE The Agency’s Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is “to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world’’. IAEA NUCLEAR ENERGY SERIES No. NW-T-1.18 DETERMINATION AND USE OF SCALING FACTORS FOR WASTE CHARACTERIZATION IN NUCLEAR POWER PLANTS INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2009 COPYRIGHT NOTICE All IAEA scientific and technical publications are protected by the terms of the Universal Copyright Convention as adopted in 1952 (Berne) and as revised in 1972 (Paris). The copyright has since been extended by the World Intellectual Property Organization (Geneva) to include electronic and virtual intellectual property. Permission to use whole or parts of texts contained in IAEA publications in printed or electronic form must be obtained and is usually subject to royalty agreements. Proposals for non-commercial reproductions and translations are welcomed and considered on a case-by-case basis. Enquiries should be addressed to the IAEA Publishing Section at: Sales and Promotion, Publishing Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 1400 Vienna, Austria fax: +43 1 2600 29302 tel.: +43 1 2600 22417 email: [email protected] http://www.iaea.org/books © IAEA, 2009 Printed by the IAEA in Austria April 2009 STI/PUB/1363 IAEA Library Cataloguing in Publication Data Determination and use of scaling factors for waste characterization in nuclear power plants. — Vienna : International Atomic Energy Agency, 2009. p. ; 29 cm. — (IAEA nuclear energy series, ISSN 1995-7807 ; no. NW-T-1.18) STI/PUB/1363 ISBN 978–92–0–110808–1 Includes bibliographical references. 1. Radioactive wastes — Analysis. 2. Radioactivity — Measurements. 3. Radiochemical analysis. I. International Atomic Energy Agency. II. Series. IAEAL 09–00576 FOREWORD Consistent with the IAEA’s published safety requirements for Predisposal Management of Radioactive Waste, Including Decommissioning (WS-R-2), radioactive waste disposal requires planned and systematic actions to provide confidence that the assessment of the radioactive inventory of the waste will satisfy given requirements for quality. However, many of the important long lived radionuclides contained in radioactive waste are difficult to measure (DTM) from the outside of waste packages using non-intrusive techniques because they are low energy, beta or alpha emitting nuclides. Identification of these DTM nuclides using complex radiochemical analysis is not practical for large numbers of waste packages. This report presents international experience with the scaling factor methodology that, in many cases, can be applied to evaluate the radioactive inventory of DTM nuclides in waste packages. This methodology relies on establishing a correlation (scaling factor) between the DTM nuclides and easy to measure (ETM) nuclides. The inventory of the ETM nuclides in a waste package can be derived based upon external gamma radiation measurements carried out on the waste package, and the DTM nuclides can be estimated from the inventory of the ETM nuclides using established scaling factors. Of specific interest is the extension of the applicability of the scaling factor methodology to the characterization of waste arising from the decommissioning of nuclear facilities, institutional waste and problematic/historical waste that needs to be retrieved from existing storage structures. This report was prepared at two consultants meetings, in December 2006 and September 2007, and at one technical meeting in September 2007. In total, 18 experts from 16 Member States, and five consultants from five other Member States participated at different stages in the development process. The IAEA wishes to express its appreciation to the individuals who took part in the preparation and publication of this report. Special thanks are extended to A. Husain (Canada), D.W. James (United States of America), B. Lantes (France), J.L. Leganes (Spain) and A. Zodiates (United Kingdom), consultants who were involved in the process from initial draft to the final version. Particular acknowledgement is due to M. Kashiwagi (Japan), who chaired the consultants meetings and coordinated the development of this report, as well as contributing significantly to the contents. Thanks are also due to M. Garamszeghy (Canada), who helped to finalize this report for publication. The IAEA officers responsible for this report were Z. Drace and P.J.C. Dinner of the Division of Nuclear Fuel Cycle and Waste Technology. EDITORIAL NOTE This report has been edited by the editorial staff of the IAEA to the extent necessary for the reader’s assistance. This report does not address questions of responsibility, legal or otherwise, for acts or omissions on the part of any person. Although great care has been taken to maintain the accuracy of information contained in this publication, neither the IAEA nor its Member States assume any responsibility for consequences which may arise from its use. The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA. CONTENTS SUMMARY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2. Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3. Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4. Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.5. Key definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. SCALING FACTOR BASICS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1. Basic philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1. Selection of difficult to measure key nuclide pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2. Transport behaviour considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2. Basis for evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3. SCALING FACTOR METHOD APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1. Application principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.1. General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.2. Development of a sampling plan (step 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1.3. Sampling and analysis (step 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1.4. Evaluation of applicability (step 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.5. Determining scaling factor and evaluation of radioactivity (step 4) . . . . . . . . . . . . . . . . . . 13 3.2. Summary of application practices in selected Member States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4. COMMONALITY AND CONSENSUS IN SCALING FACTOR PROGRAMMES . . . . . . . . . . . . 23 4.1. Evaluation of influencing factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1.1. Plant materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1.2. Fuel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1.2.1. Fuel failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1.2.1.1. Experience in Japan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1.2.1.2. Experience in the USA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.1.2.2. Fuel type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.1.3. Other factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.1.3.1. Common scaling factor for multiple waste streams . . . . . . . . . . . . . . . . . . . . . . . 28 4.1.3.2. Solubility of radionuclides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.1.3.3. Volatility of radionuclides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2. Evaluation of application methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2.1. Selection of the key nuclides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2.2. Calculation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2.3. Trend evaluation and updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2.3.1. Experience in the United States of America . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2.3.2. Experience in Japan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.2.3.3. Experience in Spain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.2.4. International integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2.4.1. Activated corrosion product nuclides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2.4.2. Fission product and alpha emitting nuclides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.3. Impacts of waste treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.3.1. Incineration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.3.1.1. Incineration in reducing conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.3.1.2. Incineration in oxidizing conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5. QUALITY MANAGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.1. General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.2. Sampling stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.3. Radiochemical analysis stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.4. Scaling factor determination stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.5. Scaling factor application stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.6. Uncertainties associated with the use of scaling factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.6.1. Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.6.2. Radiochemical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.6.3. Determination of the scaling factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.6.4. Application of the scaling factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 6. CONCLUSIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 6.1. General approach to application of the scaling factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 6.2. Decommissioning waste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.3. Research reactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.4. Fuel cycle facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.5. Common scaling factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ANNEX: COMPILATION OF INTERNATIONAL EXPERIENCE WITH SCALING FACTOR DEVELOPMENT AND USAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 CONTRIBUTORS TO DRAFTING AND REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 STRUCTURE OF THE IAEA NUCLEAR ENERGY SERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 SUMMARY The management of radioactive waste requires knowledge of the amounts and concentrations of specific radionuclides in the waste. The particular radionuclides of interest or concern may vary according to the safety case or other requirements of the waste management facility and/or the regulations of the Member State. Many of the radionuclides important for long term management of the waste are difficult to measure (DTM) from the outside of a waste package. Identification and quantification of these DTM nuclides require methods that, in general, involve analysis of waste samples using complex radiochemical analysis to separate the various radio- nuclides for measurement. This method of direct measurement is generally not practical to employ for large numbers of waste packages or for many heterogeneous waste streams. An alternative approach that can be used in many cases is to exploit the relationship between some easy to measure (ETM) key nuclides, such as certain gamma emitters, and the DTM nuclides to derive information for the DTM nuclides of interest. The scaling factor (SF) method is such an approach that is widely used to evaluate these DTM nuclides. The SF method is based on developing a correlation between ETM and DTM nuclides. The activities of DTM nuclides in waste packages are then estimated by measuring the ETM nuclides based on gamma measurements from outside the package and applying the SFs to calculate the DTM activities. The international standard ISO 21238:2007 gives guidelines for the general methodology for empirically determining SFs to evaluate the radioactivity of DTM nuclides in low and intermediate level radioactive waste (LILW) packages. The objective of this report is to provide information on the international experience in the determination and use of SFs. This report shows actual examples of the ways in which SFs have been derived and applied in various Member States. Although the main focus of the ISO standard is on LILW from the operation of nuclear power plants, the SF technique is also applicable to other situations where it is desirable to infer the activity of DTM nuclides from easy to make measurements, such as for research reactors, nuclear fuel manufacturing plants, nuclear fuel reprocessing plants, decommissioning waste, historical waste, contaminated land, etc. In each case, the technique employed is similar, but consideration must be given to the unique aspects of the situation, such as the radionuclides of concern. Development of SFs in Member States has been based on analysis of representative waste streams and/or on theoretical calculations and modelling of radionuclide production and transport mechanisms. There is general consensus among Member States that the results derived from the application of SFs must be reasonable without being overly conservative. For example, if the estimate of a DTM nuclide is overly conservative (i.e. too high), it may prematurely result in the radionuclide capacity or authorized limit of a repository being ‘expended’ before the repository is physically full. The acceptable degree of conservatism will vary depending on the application. Many Member States use the same set of key nuclides and apply similar sampling and analysis strategies. There is also an indication that Member States operating similar nuclear facilities (e.g. the same design of nuclear power plant) may be able to pool their data to develop common SFs for certain radionuclides and waste streams. This is especially useful for Member States with smaller nuclear programmes that may not be able on their own to support a large sampling and analysis programme to develop their own SFs or who lack the technical infrastructure to perform the complex measurements required. The experience compiled from Member States indicates that the development and use of SFs is a widely accepted practice by waste generators, facility operators and regulators in many countries. While the details and scope of SF programmes differ in Member States, the basic techniques and methodologies are very similar. Other Member States are in various stages of developing waste characterization programmes based on SF techniques. 1
Description: