ebook img

Hyperspherical Harmonics Expansion Techniques: Application to Problems in Physics PDF

170 Pages·2015·2.387 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hyperspherical Harmonics Expansion Techniques: Application to Problems in Physics

Theoretical and Mathematical Physics Tapan Kumar Das Hyperspherical Harmonics Expansion Techniques Application to Problems in Physics Hyperspherical Harmonics Expansion Techniques Theoretical and Mathematical Physics Theseriesfoundedin1975andformerly(until2005)entitledTextsandMonographsin Physics (TMP) publishes high-level monographs in theoretical and mathematical physics.ThechangeoftitletoTheoreticalandMathematicalPhysics(TMP)signalsthat theseriesisasuitablepublicationplatformforboththemathematicalandthetheoretical physicist. Thewider scope of the series is reflected by the composition ofthe editorial board, comprising both physicists and mathematicians. The books, written in a didactic style and containing a certain amount of elementary background material, bridge the gap between advanced textbooks and research monographs. They can thus serve as basis for advanced studies, not only for lectures and seminars at graduate level, but also for scientists entering a field of research. Editorial Board W. Beiglböck, Institute of Applied Mathematics, University of Heidelberg, Heidelberg, Germany P. Chrusciel, Gravitational Physics, University of Vienna, Vienna, Austria J.-P. Eckmann, Département de Physique Théorique, Université de Genéve, Geneve, Switzerland H. Grosse, Institute of Theoretical Physics, University of Vienna, Vienna, Austria A. Kupiainen, Department of Mathematics, University of Helsinki, Helsinki, Finland H. Löwen, Institute of Theoretical Physics, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany M. Loss, School of Mathematics, Georgia Institute of Technology, Atlanta, USA N.A. Nekrasov, Simons Center for Geometry and Physics, State University of New York, Stony Brook, USA M. Ohya, Tokyo University of Science, Noda, Japan M. Salmhofer, Institute of Theoretical Physics, University of Heidelberg, Heidelberg, Germany S. Smirnov, Mathematics Section, University of Geneva, Geneva, Switzerland L.Takhtajan,DepartmentofMathematics,StateUniversityofNewYork,StonyBrook, USA J. Yngvason, Institute of Theoretical Physics, University of Vienna, Vienna, Austria More information about this series at http://www.springer.com/series/720 Tapan Kumar Das Hyperspherical Harmonics Expansion Techniques Application to Problems in Physics 123 Tapan KumarDas Department ofPhysics University of Calcutta Kolkata, West Bengal India ISSN 1864-5879 ISSN 1864-5887 (electronic) Theoretical andMathematicalPhysics ISBN978-81-322-2360-3 ISBN978-81-322-2361-0 (eBook) DOI 10.1007/978-81-322-2361-0 LibraryofCongressControlNumber:2015953815 SpringerNewDelhiHeidelbergNewYorkDordrechtLondon ©SpringerIndia2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper Springer(India)Pvt.Ltd.ispartofSpringerScience+BusinessMedia(www.springer.com) Preface A major part of research in physics involves solving the Schrödinger equation. While one-body motion in a potential field and a two-body system with mutual interactionaresubjectmattersofstandardtextsofQuantumMechanics,anabinitio formal solution of themany-bodySchrödinger equation forinteractingmany-body systems is not commonly encountered. The reason for this is that mathematical complexity increases enormously as the number of particles increases from two to three. It is not just the difficulty arising from the increasing number of position coordinates,butalsothedifficultyinimposingthedesiredsymmetryofthesystem, identificationofappropriateconservedquantumnumbers,etc.Naturally,physicists tend to depend on approximate many-body techniques e.g. Born-Oppenheimer approximation, variational and perturbation techniques, mean-field theories like Hartree-FockandHartree-Fock-Bogoliubovmethods,etc. orontheuseofmodels, e.g.,shell,collectiveorliquiddropmodelsinNuclearPhysics.However,anumber of problems involving systems containing a few particles demand description in terms of coordinates of individual particles. In such cases it is necessary to handle the few-body Schrödinger equation in an exact manner. Hyperspherical harmonics is the appropriate basis for this. With developments in mathematical and compu- tational tools, it is becoming increasingly easy to handle the hyperspherical har- monics basis. Hence it is becoming popular as an effective tool in theoretical research.Thehypesphericaltechniqueisquitehandyforuseintheessentiallyexact Monte Carlo methods for a fairly large number of interacting particles. Unfortunately, there is a dearth of monographs dealing with the hyperspherical technique.Thismonographisaimedatfulfillingthisnecessity.Besidesintroducing the hyperspherical variables (which are many-body generalization of ordinary spherical polar coordinates) and hyperspherical harmonics basis for the expansion ofamany-bodywavefunction,methodstointroducedesiredsymmetryofthewave function has been discussed. Approximation methods, which simplify the calcu- lations, without loosing sight of the interesting physics sought after, have also been included. Finally, discussion of a number of current topics in physics like v vi Preface Bose–Einsteincondensation, wherethistechnique hasbeenveryuseful,havebeen incorporated. I take this opportunity to thank all my colleagues and friends at the Physics DepartmentoftheUniversityofCalcuttafortheirhelpandcooperation.Ispecially thank Prof. A. Raychaudhuri and Prof. P. Sen for their continuous encourage- ment and support. I also thank all my collaborators, and in particular Prof.B.Chakrabarti,fortheirhelpinresearch.ThanksareduetotheDepartmentof Science and Technology, Government of India, for financial assistance for this project(No.HR/UR/08/2011).Last,butnottheleast,Iexpressmyappreciationand thanks tomywife Rita anddaughterArunima,fortheirunderstandingandbearing with me, as I could not spare much time for them due to this project. Catalysed and supported by the Science & Engineering Research Board, DepartmentofScience&TechnologyunderitsUtilisationofScientificExpertiseof RetiredScientistsScheme. Kolkata Tapan Kumar Das Contents 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Systems of One or More Particles. . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 One-Body System: A Particle in a Potential Field. . . . . . . . . . . 5 2.2 Two-Body System with Mutual Interaction . . . . . . . . . . . . . . . 7 2.2.1 Two Distinct Particles. . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.2 Two Identical Particles: Symmetry of Wave Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.3 Inclusion of Spin Degrees of Freedom . . . . . . . . . . . . 10 2.2.4 Introduction of Isospin Degrees of Freedom for Nucleons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 System of Several Particles . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.1 Independent Particle Model: Mean-Field Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.2 Many-Body Description . . . . . . . . . . . . . . . . . . . . . . 15 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3 Three-Body System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1 Jacobi Coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 Hyperspherical Harmonics. . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 Schrödinger Equation for Relative Motion. . . . . . . . . . . . . . . . 24 3.4 Calculation of Potential Matrix Element . . . . . . . . . . . . . . . . . 25 3.4.1 Expansion of Potential in Hyperspherical Multipoles . . 26 3.4.2 Calculation of Potential Multipole . . . . . . . . . . . . . . . 27 3.5 Symmetrization of HH Basis. . . . . . . . . . . . . . . . . . . . . . . . . 28 3.6 Calculation of GSC for Central Potentials. . . . . . . . . . . . . . . . 30 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4 General Many-Body Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.1 Jacobi Coordinates and Hyperspherical Variables. . . . . . . . . . . 34 4.2 Generalized Hyperspherical Harmonics. . . . . . . . . . . . . . . . . . 36 vii viii Contents 4.3 Symmetrization of Wave Function . . . . . . . . . . . . . . . . . . . . . 39 4.3.1 Kinematic Rotation Vector (KRV) . . . . . . . . . . . . . . . 39 4.3.2 Symmetrization of Wave Function . . . . . . . . . . . . . . . 42 4.4 Schrödinger Equation: Coupled Differential Equations . . . . . . . 43 4.5 Approximation by Truncation of Basis . . . . . . . . . . . . . . . . . . 44 4.5.1 Restriction of Symmetry Components. . . . . . . . . . . . . 45 4.5.2 L Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 45 m 4.5.3 Optimal Subset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.5.4 Potential Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.6 Truncation of Basis: Application to Particles and Nuclei. . . . . . 47 4.6.1 Baryons as Three-Quark Systems. . . . . . . . . . . . . . . . 48 4.6.2 Nuclear Few-Body Systems. . . . . . . . . . . . . . . . . . . . 49 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5 The Trinucleon System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.1 Symmetrization of Spin–Isospin Wave Function. . . . . . . . . . . . 56 5.1.1 States Having Total Isospin t¼1 and Spin s¼1 . . . . . 57 2 2 5.1.2 States Having Total Isospin t¼3 and Spin s¼1 . . . . . 60 2 2 5.1.3 States Having Total Isospin t¼1 and Spin s¼3 . . . . . 60 2 2 5.1.4 States Having Total Isospin t¼3 and Spin s¼3 . . . . . 61 2 2 5.2 Symmetrization of Total Wave Function. . . . . . . . . . . . . . . . . 61 5.2.1 General Expression for Fully Antisymmetric Wave Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.2.2 Construction of HH for Different Partitions . . . . . . . . . 63 5.3 Optimal Subset for the Trinucleon . . . . . . . . . . . . . . . . . . . . . 64 5.4 Calculation of Potential Matrix Element: GSC. . . . . . . . . . . . . 68 5.4.1 Coupling Among S and S0 States Through Central Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.4.2 Coupling Between S and D State Through Tensor Interaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.4.3 Coupling Between S0and D States Through Tensor Interaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.4.4 Coupling Between Two D States Through Central Forces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.4.5 Coupling Between Two D States Through Tensor Interaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.4.6 Numerical Computation of GSCs. . . . . . . . . . . . . . . . 76 5.5 Results of Numerical Calculations for 3H and 3He. . . . . . . . . . 77 5.6 Addition of Three-Nucleon Forces . . . . . . . . . . . . . . . . . . . . . 79 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Contents ix 6 Application to Coulomb Systems. . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.1 Two-Electron Atoms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.1.1 Exact Non-adiabatic Treatment of Two-Electron Atoms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.1.2 Convergence of HH Expansion: Extrapolation and Accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.2 General Three-Body Coulomb Bound Systems. . . . . . . . . . . . . 90 6.2.1 Adiabatic Approximation in Coulomb Systems . . . . . . 91 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 7 Potential Harmonics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.1 Potential Harmonics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 7.2 Potential Multipoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 7.3 Overlap of PHs of Different Pairs. . . . . . . . . . . . . . . . . . . . . . 99 7.4 Potential Basis as Optimal Subset. . . . . . . . . . . . . . . . . . . . . . 100 7.4.1 Symmetrical PH Basis . . . . . . . . . . . . . . . . . . . . . . . 100 7.5 Potential Matrix in Unsymmetrized PH Basis. . . . . . . . . . . . . . 101 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 8 Application to Bose–Einstein Condensates. . . . . . . . . . . . . . . . . . . 105 8.1 General Properties of BEC . . . . . . . . . . . . . . . . . . . . . . . . . . 107 8.2 GP Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 8.2.1 Simplifying Assumptions and Their Limitations. . . . . . 110 8.2.2 Rigorous Proof of Existence of BEC and Derivation of the GP Equation. . . . . . . . . . . . . . . 110 8.3 Many-Body Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 8.4 Need for a Short-Range Correlation Function. . . . . . . . . . . . . . 116 8.5 Results for Repulsive and Attractive Condensates. . . . . . . . . . . 119 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 9 Integro-Differential Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 9.1 Derivation of IDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 9.2 Applications of IDE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 9.2.1 Nuclear Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 9.2.2 Bose–Einstein Condensates . . . . . . . . . . . . . . . . . . . . 136 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 10 Computational Techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 10.1 Solution of a Single Differential Equation. . . . . . . . . . . . . . . . 142 10.2 Solution of Coupled Differential Equations . . . . . . . . . . . . . . . 144 10.2.1 Exact Solution of the CDE . . . . . . . . . . . . . . . . . . . . 145 10.2.2 Introduction of Hypercentral Average. . . . . . . . . . . . . 149 10.2.3 Hyperspherical Adiabatic Approximation. . . . . . . . . . . 150

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.