Hyperspectral remote sensing of biochemical and biophysical parameters: The derivative red-edge “double-peak feature”, a nuisance or an opportunity? Moses Azong Cho Promotor: Prof. Dr. A.K. Skidmore Professor of Vegetation and Agricultural Land Use Survey International Institute for Geoinformation Science and Earth Observation (ITC), Enschede and Wageningen University, The Netherlands Co-Promotor: Dr. S.E. van Wieren Assistant professor, Resource Ecology Group Wageningen University, The Netherlands Examining Committee: Prof. Dr. M.E. Schaepman Wageningen University, The Netherlands Prof. Dr. S.M. de Jong Utrecht University, The Netherlands Prof. Dr. C.M. Lambi University of Buea, Cameroon Prof. Dr. F.D. van der Meer Utrecht University and ITC, Enschede The Netherlands This research is carried out within the C.T. de Wit Graduate School for Production Ecology and Resource Conservation (PE&RC) in Wageningen University, the Netherlands Hyperspectral remote sensing of biochemical and biophysical parameters: The derivative red-edge “double-peak feature”, a nuisance or an opportunity? Moses Azong Cho Thesis To fulfil the requirements for the degree of Doctor on the authority of the Rector Magnificus of Wageningen University Prof. Dr. M.J. Kropff to be publicly defended on Thursday 12th of April, 2007 at 15:00 hrs in the auditorium at ITC, Enschede, The Netherlands Hyperspectral remote sensing of biochemical and biophysical parameters © 2007 Moses Azong Cho ISBN: 978-90-8504-622-6 International Institute for Geo-information Science & Earth Observation, Enschede, the Netherlands (ITC) ITC Dissertation Number: 142 Table of contents Table of contents.........................................................................................i Abstract...................................................................................................vii Samenvatting............................................................................................ix Acknowledgements................................................................................xiii Chapter 1....................................................................................................1 General introduction..................................................................................1 1.1 Remote sensing of biochemical and biophysical parameters........2 1.2 Conventional remote sensing of vegetation parameters................2 1.3 Hyperspectral remote sensing of vegetation parameters...............5 1.3.1 The red-edge position (REP)...................................................6 1.3.2 Multivariate regression techniques..........................................7 1.4 Research Objectives.......................................................................7 1.6 General methods............................................................................8 1.7 Thesis outline.................................................................................9 Chapter 2..................................................................................................11 A new technique for extracting the red-edge position from hyperspectral data: The linear extrapolation method.....................................................11 2.1 Introduction..................................................................................13 2.2 Experiments and data sets............................................................15 2.2.1 Greenhouse experiment.........................................................16 2.2.2 Field experiment....................................................................16 2.2.3 Spectral measurements..........................................................16 2.2.4 Measurement of foliar nitrogen concentration......................18 2.3 Red edge position algorithms......................................................19 2.3.1 Maximum first derivative spectrum.......................................19 2.3.2 Linear four-point interpolation technique..............................19 2.3.3 Polynomial fitting technique..................................................20 2.3.4 Inverted Gaussian fitting technique.......................................22 2.3.5 Proposed technique: linear extrapolation technique..............22 2.3.5.1 Model description..........................................................22 2.3.5.2 Sensitivity analysis........................................................26 2.3.6 Comparing the performance of various REP extraction techniques for wider bandwidth spectra................................27 2.4 Results..........................................................................................28 2.4.1 Sensitivity analysis................................................................28 2.4.2 Comparing the statistics of red edge positions extracted by different techniques...............................................................30 2.4.3 Performance of five techniques for estimating foliar nitrogen concentration..........................................................................31 2.4.4 Comparing the performance of various REP extraction techniques for wider bandwidth spectra................................34 2.5 Discussion....................................................................................35 2.6 Conclusions..................................................................................38 Acknowledgements..........................................................................39 Chapter 3..................................................................................................41 Towards red-edge positions less sensitive to canopy biophysical parameters for leaf chlorophyll estimation using PROSPECT-SAILH simulated data..........................................................................................41 3.1 Introduction..................................................................................43 3.2 Methods.......................................................................................45 3.2.1 Radiative transfer models......................................................45 3.2.1.1 PROSPECT and SAILH models...................................45 3.2.1.2 Model parameterisation.................................................46 3.2.2 Red-edge position algorithms................................................48 3.2.3 Data analysis..........................................................................52 3.2.3.1 Relationship between leaf chlorophyll content and red edge position..................................................................52 3.2.3.2 Influence of canopy biophysical parameters on red edge positions extracted by various methods.........................52 3.2.3.3 Effects of solar zenith angle and sensor noise on the linear interpolation method............................................52 3.2.3.4 Effects of degrading the bandwidth on the linear extrapolation method.....................................................53 3.3 Results..........................................................................................54 3.3.1 Relationship between leaf chlorophyll content and red edge position..................................................................................54 3.3.2 Influence of canopy biophysical parameters on red edge positions extracted by various methods.................................55 3.3.3 Effects of solar zenith angle and sensor noise on the linear extrapolation method.............................................................55 3.3.4 Effects of degrading the bandwidth on the linear extrapolation method...................................................................................56 3.4 Discussion....................................................................................56 3.5 Conclusions..................................................................................58 Acknowledgement...........................................................................58 Chapter 4..................................................................................................59 ii Discriminating species using hyperspectral indices at leaf and canopy scales........................................................................................................59 Abstract................................................................................................60 4.1 Introduction..................................................................................61 4.2 Material and methods..................................................................63 4.2.1 Spectral measurements.........................................................63 4.2.2 Spectral indices......................................................................63 4.2.2.1 Vegetation indices.........................................................64 4.2.2.2 Red-edge position (REP)...............................................64 4.2.3 Data analysis..........................................................................67 4.3 Results..........................................................................................70 4.3.1 Differences between leaf and canopy indices........................70 4.3.2 Discriminating species...........................................................75 4.4 Discussion....................................................................................78 4.4.1 Differences between leaf and canopy indices........................78 4.4.2 Discriminating species...........................................................80 4.4.3 Implications for upscaling leaf level information to the canopy scale...........................................................................81 4.5 Conclusions..................................................................................82 Acknowledgments...........................................................................82 Chapter 5..................................................................................................83 Hyperspectral predictors for monitoring biomass production in Mediterranean mountain grasslands: Majella National Park, Italy..........83 Abstract................................................................................................84 5.1 Introduction..................................................................................85 5.2 Material and methods..................................................................86 5.2.1 The study area........................................................................86 5.2.2 Field data collection...............................................................87 5.2.3 Image acquisition and pre-processing...................................88 5.2.4 Collecting image spectra for grass/herb plots........................88 5.2.5 Data analysis..........................................................................89 5.2.5.1 Spectral predictors.........................................................89 5.2.5.2 Assessing the robustness of hyperspectral predictors for monitoring grass/herb biomass......................................93 5.3 Results..........................................................................................94 5.3.1 Spectral and green grass/herb biomass characteristics for 2004 and 2005.................................................................................94 5.3.2 Predictive performance of vegetation indices........................96 5.3.3 Predictive performance of the red-edge position.................100 5.4 Discussion..................................................................................102 iii 5.5 Summary and conclusions.........................................................103 Acknowledgements........................................................................104 Chapter 6................................................................................................105 Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression......105 Abstract..............................................................................................106 6.1 Introduction................................................................................107 6.2 Material and methods................................................................109 6.2.1 The study area......................................................................109 6.2.2 Field data collection.............................................................109 6.2.3 Image acquisition and pre-processing.................................110 6.2.4 Collecting image spectra for grass/herb plots......................111 6.2.5 Data analysis........................................................................111 6.2.5.1 Hyperspectral indices...................................................112 6.2.5.2 Partial least squares regression....................................117 6.3 Results........................................................................................118 6.3.1 Hyperspectral indices (NDVI and REP)..............................119 6.3.2 Partial least squares regression............................................123 6.4 Discussion and conclusions.......................................................124 Acknowledgements........................................................................125 Chapter 7................................................................................................127 Mapping beech (Fagus sylvatica L.) forest structure using partial least squares regression on airborne hyperspectral imagery..........................127 Abstract..............................................................................................128 7.1 Introduction................................................................................129 7.2 Material and methods................................................................131 7.2.1 Study site.............................................................................131 7.2.2 Image acquisition and processing........................................131 7.2.3 Field measurements of forest stand attributes.....................132 7.2.4 Data analysis........................................................................132 7.2.5 Data analysis........................................................................132 7.2.5.1 Spectral indices............................................................134 7.2.5.2 Stepwise regression.....................................................134 7.2.5.3. Partial least squares regression (PLS)...........................134 7.2.5.4 Artificial neural networks (ANN)................................136 7.3. Results........................................................................................136 7.3.1 Structural parameters...........................................................138 7.3.2 Relationship between mean DBH, mean height or tree density and individual band reflectance...........................................138 7.3.3 Predicting forest parameters................................................139 iv 7.3.3.1 Using spectral indices..................................................140 7.3.3.2 Using stepwise regression............................................144 7.3.3.3 Using partial least squares regression..........................145 7.3.3.4 Using artificial neural networks...................................148 7.3.6 Mapping forest structure......................................................150 7.4 Discussion..................................................................................154 7.4.1 Predictive performance of various methods........................154 7.4.2 Predictive map of DBH and implications for beech forest management.........................................................................156 7.5 Conclusions................................................................................157 Acknowledgments.........................................................................157 Chapter 8................................................................................................159 Synthesis................................................................................................159 Estimating biochemical and biophysical parameters with hyperspectral remote sensing.......................................................................................159 The derivative red-edge “double peak feature”, a nuisance or an opportunity?...........................................................................................159 8.1 Introduction................................................................................160 8.2 Towards red-edge positions less sensitive to canopy structure for chlorophyll/nitrogen estimation.................................................162 8.2 Application of the linear extrapolation method for discriminating species at leaf and canopy scales...............................................166 8.3 Comparing univariate and multivariate statistical techniques for estimating vegetation structural parameters with hyperspectral data.............................................................................................167 8.5 Utility of Empirical methods.....................................................170 8.4. Conclusions.................................................................................173 References..........................................................................................175 Author’s Biography...............................................................................193 Curriculum vitae................................................................................193 Scientific Publications.......................................................................194 ITC DISSERTATION LIST..................................................................195 v vi
Description: